[박주혁t FINAL] 수능대비 공도벡문제 풀고갑시다~
[개정수학] wp리뉴얼 full.pdf
우선 풀어보시고요^^ (이과 한정)
네, 오르비클래스 박주혁입니다.
이 문제는 제가 지난번에 올린 무료자료
(확통자료 제외하고 모든문제 해설인강 완강함!)
에 있는 [개정수학] wp 리뉴얼 에 있는 24번문항이고요.
베르테르님이 제공하신 문제중에서, 어디에도 공개되지 않았던 문제이기도 합니다.
난이도가 상당히 있어서
강의듣지 않는 친구들/ 현강친구들의 질문이 꽤나 많았던 (쪽지등으로) 문제입니다.
그래서,
제 수업을 도와주시는 조교님이 완전 예쁘게 지면해설을 써 주셨습니다.
문제 풀어보시고, 해설도 보세요~
네^^ 답은 1번입니다.
마무리 학습에 도움이 되길 바라며,
지면해설 써주신 조교님에게도 감사인사를 전합니다^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐친구?
-
학교가 공사를 한대서 20일날 이른 졸업을 했습니다. 3년간 수시러로 살면서 학교...
-
일어났어요 6
다들 자요?
-
1학년 1학기 학고->2학기 휴학 후에 반수 실패하면 자진 유급해서 다시 1학년...
-
고대식 660.1 한명만 빠지면되는데
-
핑
-
애프터장은 쉽지 않구나..
-
서울대 진학사 0
어제 업뎃이후로 서울대 문과 추합컷이 많이 낮아진것 같은데 이유가 있나요?...
-
이건아직 모르겧음..
-
멍
-
나 없던 사이에 글댓을 몇개나 쓴거야
-
근데 확실히 감성이 많이 다르네 BL 느낌도 ㅈㄴ 나고 86가 ㅈㄴ 독특한듯
-
다자녀면 공군 0
얼마나 유리한가요? 영향이 어느정도인지 궁금합니다
-
교수님 안 주무세요?? 기습 계엄도 아니고 새벽 발표라뇨
-
선제리 아낙네들 2
먹밤중 한밤중 새터 중뜸 개들이 시끌짝하게 짖어댄다. 이 개 짖으니 저 개도 짖어...
-
군대갔다왔다고는 해도 03이면 내년수능보기는 너무 늦었겠지 그래도
-
크리스마스에 할짓없어서 옯비 보다보니까 ㅅㅂ 삼수생각 ㅈㄴ드네.......하아
-
자야지 4
-
좀 최신 애니인 사펑 엣지러너를 봤으니 암굴왕 같은 명작 틀딱 애니나 볼까
-
반수의 결과로 가치 있을까요? 중대가 더 높아졌긴해도 사회나가면 중경외시...
-
잘자요 4
다들메리크리스마스
-
병약미소녀 ㅇㅈ 23
은 구라고 그냥 ㅂㅅ임 펑
-
모두 잘자요 9
다들 행복한 이브 보내셨나요? 전 아싸라 늘 지내듯 지낸 것 같네요.. 모두 잘자고...
-
한국정발하면저걸로바꿔야지
-
현역인데 여기 못가면 재수할 예정인데 합격확률 0퍼센트인가요? 7
ㅜㅜ..그리구 이해가 안가는게 최초정시 모집인원이 238명인데 저기 등수 안에잇는데 3칸 ㅜㅜ
-
산타랠리 에 숏을 쳐?
-
하루종일 오르비를 지킨 자의 훈장
-
에 전혀 관심 없는 건 아닌데 n이 늘어나니까, 연애 감정이 무뎌져요.. 연애...
-
기만글만 안쓰면 욕 안먹을 텐데
-
ㅂㅂ
-
안돼 가지마!!!
-
크리스마스에 여친없는 애들끼리 놀고있으니까 ㅈ같음이 2배 흐흐
-
저능부엉이
-
이제 자야돼 2
내일 또 보자 옯붕이들
-
zzz 2
-
(고려대)의대 면접 보는데 얼마 정도 시간이 소요 되나요?? 고려대 아니어도 한번씩만 답변좀...
-
ㅂㅂ
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
이제야깨달아버렸다
-
감성이 다르노 결말이 너무 성급했단 느낌은 아무래도 이 애니가 10회라는 분량밖에...
-
논술 예비 받음 ㅋㅋ
-
정시의벽 <<< 6
이 사람도 글 쓰는 거 까먹어서 아까 호다닥 글 쓰고 또 한참 잠적했다가 나타남...
-
일본영화 추천좀 2
잔잔한거 좋아함 넷플에있는거로 ..
-
이렇게 푸는거 맞나요 재밌네요 ㅋㅋㅋ
-
표본이 제일 많은 진학사가 컷이 높아서 컷이 낮은 고속 텔그를 믿지 못함 ㅜㅜ
-
ㅋㅋ 동지들
-
여르비 ㅇㅈ해도 누가했는지 다까먹음 망할거 닉보고는 여르비인지 못맞출듯
구s1의 중심인 0,2t,t 를 직선 l이 지난다고 하셨는데 왜 그런거죠??
방향벡터가 0,2,1 인 직선이 중심을 지나는건 알겠는데 왜 하필 원점을 지나고 방향벡터가
0,2,1 인 직선이 구s1의 중심을 꼭 지나는건지 이해가 잘 안가요.
원점이 왜 갑자기 나온거죠?
중심좌표가 (0,2t,t) 이므로,
중심의 자취를 구하면 x=0,y/2=z/1 인 직선이
됩니다. 그래서 직선이 원점을 지나는 것 이고요~
혹시 몇번정도 난이도로 생각하시고 제작하신건가요?
역시 29번 공도 난이도로 생각하신거겠죠??
제가 제작한것은 아니고 베르테르님이 제작한 문제이고요, 객관식의 탈을 쓰고 있지만 난이도는 29번대비 이지요^^
샘 손해설 생각보다 훨씬글씨체가 깜찍?하시네영 ㅎㅎㅎ 잘보았슴다
조교님이 워낙 깜찍하신 분이라서ㅋㅋ
수능 29번이 이것보다 어려우면 바로 버릴것 같네요.. 베르테르님 넘나 대단..
난이도라던가 문항적중의 의미보단,
멘탈연습하자는 의미로^^
나름 실모기벡풀면서 잘만다생각했는데 불안해지네요... 이정도면 30번급 아닌가요
30번은 미적분으로 연습을^^
난이도가 30번급인가요? 음 그정도인가...
yz평면으로으로 단면화해서 풀면 금방 보이네요. 특히 임의의 t에 대해 성립하기때문에 단면화한 상황에서 S2,S3를 yz에 정사영시킨 원을 S'이라 하고
S1의 중심을 z=1/2y로 이동시키면서 관찰하면서
푸는방법도 있겠죠ㅋㅋ 결국 원 세개 겹친 넓이
구하는게 제일 까다롭네요
네^^ 제시하신 방법도 좋은 방법이네요~
출제자도 그래서 특수한 상황을 주고, 면적을 구할수 있게 한 것 같습니다.
마치 수능이 그러하듯이~
좋은 문제 감사드립니다 박주혁 선생님, 베르테르님~
근데 수능수학에서 이와같은 특수한 상황 외에도 넓이를 구할 수 있나요?그니까 제 말은 원들이 서로의 중심들을 지나 아름답게 딱 3등분이 되는...그런 상황말입니다. 절차대로 풀긴 했지만 애매한 경우를 줄 것 같지 않은 생각이 들어서 풀면서 이와같은 특수한 상황이 예상이 되서요.
이 기출정도까지만 하실수 있다면 될듯 싶은데ㅎㅎ 제생각입니다
곰블릭님ㅋ 이문제 보고나니까
베르테르님이 이 문제에서 영감을 얻어 3d로 확장된 상황을 만드신 것도 같네요~
네, 그동안의 상황을 보면 특수한 상황들을 많이 주긴 했지요~
사실 뭐 그런 상황을 예측해서 풀어나가기 보다는,
조건을 해석하는데 충실하면 어떤 상황이 나오게 되고,
그렇다면 그 상황에서는? 이라고 논리를 전개해 나가는 연습을 하면
될 것 같아요~