(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
손가락은 그렇지 못했어.. 더이상 나 자신을 믿지 못하는게 서글프구나
-
덕코 뿌림 9
랜덤
-
그나마 문과에 친숙한 학과라는데 진짜 그런지
-
뻥임뇨
-
근데 코즈키 오뎅인
-
학원 쌤이 수학때문에 성적 뚝 떨어진다고 ㅂㄱㄴ이라하던데 ㄹㅇ임? ….. 수학 진짜 ㅈㄴ 못보긴 함
-
온리 팬 티
-
바나나킥이 정말 9
맛있네요
-
등록금 철마다 감사합니다... 그저 goat...
-
호날두 vs 메시 누구임 ㅇㅇ? 일단 난 호날두임
-
아시발깜빡했네 4
이틀이나 빼먹었노
-
세종대 환산점수 0
세종대 일반전형 자연계열(자연생명계열,~ )로 환산점수 돌리면 680.5점 나오는데...
-
어제 점심 1
맛있는 양식
-
대략 33211이면 어느대학라인 인가용
-
이대남?
-
의대생들 웃긴게 15
바이탈 죽는다 뭐다 하는데 언제부터 그렇게 바이탈을 사랑했음? 내외산소 전공의는...
-
오뎅 10개먹기 10
헤에
-
https://orbi.kr/00070126963 댓글을 제대로 못 달아서 너무...
-
3월쯤부터 재수예정이고 메디컬 목표입니다 그런데 지구과학이 너무 변동성이 커서...
-
ㅇㅇ?
-
14 20 21 23 30 틀렸어요 걍 84라고 생각해주세요.. 뉴런들어야하나??...
-
ㄱㄴㄷ 문제 답 뭐였음?
-
어머니의 소중함을 자취하고나서야 아는게 너무 불효자같아.. 자취생 4대 적 설거지...
-
야식 ㅇㅈ 6
맛잇네요.
-
오늘 제가 발표할건 수요와공급 곡선입니다 경제학의 관심이 있고 또 공부해봤기때문에...
-
내일은 진짜 안옴
-
양승진&김범준 0
김범준 공통, 미적 둘 다랑 양승진 미적 신청해놨는데 섞을까요? 아니면 김범준쌤 풀커리 탈까요..?
-
등급컷 0
등급컷 대성마이맥처럼만 나오면 너무좋겠다 ㅋ... 확통 80인데 백분위86 잡아주는 착함..
-
중학생때 옆자리 여자애가 가방 계속 부스럭소리내면서 뒤지고 있길래 먹을건줄 알고...
-
91-92 vs 92-93 중에 뭐가 그나마 확률이 높다고 생각하시나요.........
-
기사를 보면 올해 컷이 다 오른다고 하는데요.. 서울대는 표점이니... 작년보다...
-
흐음 0
과탐 1컷은 조교지원 못하겟지..너무 양심이 없나?
-
아 나 공강 없는데..
-
고3패스로 강의를 따로 담을수있나요? 제가 지금 쓰는 고1패스가 12월...
-
전엔 너무 마른 느낌이 좀 있었는데 이젠 그것마저 없는듯 완벽 그 자체임....
-
힌트) 주기는 2pi이고 가로세로 스케일은 같습니다
-
시대 지구 현강 0
지구과학 시대 현강 사는곳은 목동이지만 이신혁쌤 때문에 대치 가야하나 싶습니다...
-
알바천국
-
학교 마치고 5-6시간만 공부해도 머리에 더 이상 뭔갈 넣을 수 없는 경지에...
-
전설의 이화뱃 딱 세 번 봄 ㅋㅋㅋ
-
인강생이나 연고 없는 사람은 지원 불가능임?
-
항상 뭐 하나 들고올거 빠뜨리고 옴 저번엔 충전기 이번엔 수염크림이랑 참치캔..
-
한번도 안먹어봄
-
덕에외모백분위1에서2로 2배뜀뇨
-
배달음식 대신 이삭토스트 서브웨이 포장 BHC 버거킹 돈까스 매장에서 먹음 아무튼 안시켰죠
-
국어 표점이 6모 9모 수능 다 똑같은거 같아요 124로.. 이번 수능에 얼추...
-
대학에서 공부하는데 어려움은 없나요?
-
ㅅㅂ 삼수생은힘들다
-
경희대 경제 가고싶단 말이야 왜 수직낙하 한다는거야 살려줘
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다