[박주혁t] [4월학평21] 중복조합의 위력 (만점칼럼 - 두번째)
====================================================================
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 11
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
-
암튼 개꿀
-
슬슬나가볼까 1
어디를 가볼까요~~
-
덕코가 실효성이 없으니까 생긴문제임
-
애니 봐야하는데 하루종일 마크만 할거 같아서..
-
매일매일하루에몇번을오가는그길이너무너무너무너무질림
-
무슨 이모티콘을 달아야 하는지는 팍팍 감이 오는데 어디에 있는지를 까먹어서 찾는데 한참 걸림
-
1학년때딴게과연취업후에쓸모가잇를지는잘모르겟지만
-
또 나만 저능하지
-
이제 자야겠음뇨 활동랭킹 방금전까지 20위였는데 11위되니 현타옴뇨
-
이미지 적어봐 4
예상되는말들이 어차피 많긴함
-
전글 이미지는 마크중이라 다하고 적어드림
-
100문 100답인가 질문 일렬로 엄청 적힌 사진 있는데 질문마다 번호 매겨져있고...
-
사람 많을때 또 써줘야겠다
-
올해 19번까지 15번빼고는 다 풀었는데 14번에서 되게 시간 많이 썼어요… 시간도...
-
내가 졌다뇨.. 4
잠뇨
-
여러분이 올린 모든 글들은 제 뇌에 저장되어 있습니다.
-
난 청정수
-
아카이브가 정확히 뭔가요??
-
난 이미지 안써줌뇨 24
ㅅㄱ뇨
-
나도 이미지 써줌 29
잠깐 마크 농작물 수확만 하고 와서 바로 써줌
-
진학사에선 숭실대가 추합으로 떠버리던데 가능한가요
-
초면이면 첫인상 말씀해드림
-
옯창빙고 아싸빙고
-
1. 수학 모든 영역을 건드려 볼 수 있다. 2. 시간 관리 연습을 할 수 있다....
-
난 이분야에선 져본적이 없음뇨
-
이건 뭘 뜻히죠?
-
앗싸 커뮤 잘 골랏다.
-
내일 일정 8
일어나서 밥먹고 씻고 마크하기 근데 애니도 봐야되네.. 아 한번 나갔다 오기도...
-
easy 8
컷 아임더 베스트
-
학교 옮기고 싶은 생각이 안드는거지 전과 복전 까다로웠으면 진작 수능 쳤을 듯
-
본인 오르비 24시간 상주하는데 오르비 매니저 직책 달아주셈뇨
-
10만덕 넘으면 옯창
-
덤벼
-
나 옯창인가 11
옯뉴비같음
-
!!!!!!!!!!!! 토익 책 추천 부탁드립니다!!!!
-
전쟁 선포함뇨 1
테러리스트와 협상은 없다
-
서울대전기탈출 << 이분 goat셨는데 결국 설의 가셨는지 궁금
-
머임 왜또글삭함 1
인사도못하게만들면 어쩌라는거임
-
수능은 안치고 싶다 점점 현실이랑 타협하게 되는 느낌이 드네요 그냥 군대를 빨리갈까
-
이미 예상하고 안자고 있었음뇨 ㅇㅇ
-
잔다 2
특) 안잠
-
난 옯창인가? 4
감사합니다 ^^
중복조합으로 풀 수 있다는 생각은 못했는데.. 역시 대단하십니다 ㅋㅋ
감사감사~^^
아이들이 넘 이쁘네요
아프지 않으면 좋겠네요ㅠㅜ
주혁샘. 애들이 아픈것도 같이 아팠나봐요 ㅠㅠ. 항상 건강하길.! 좋은자료 잘 읽고갑니다. 조만간 밥한번먹어요 샘.!
네~ 건강이 최고지요^^
시험장에선 이렇게 못풀것같네요ㅠㅠ 작년7모 응시자로서 (ㅋ) 바둑돌문제는 그림을 그려보면 저렇게 중복조합 덩어리가 보였는데 자연수1.2.3....n 이렇게써놓고보면 전혀 그런생각이 안드네요ㅠ
해설강의에서도 이야기 했지만,
귀납적접근이 최우선순위입니다.
이 풀이같은 경우, 레벨업이 되면서 자연스럽게 보이는 것이고, 공부하게 되면 유사구조의 관계를 빠르게 파악할 수 있어요~ 부담갖지말고 읽어두시면 됩니다~
ㅎㅎ중복조합칼럼쓰시려햇군요
제가한 발 빨랏네요ㅎㅎ 21번문제 중복조합접근도 괜찬네용ㅎ
글고 둥이넘귀여워요흑흑
귀여워요^^ 아프지만 말아다오ㅠ
중복조합 저 문제 기출문제 중에 비슷한 거 있지 않나요?
마더텅에서 풀다가 해설 보고 헉 했었어요 ㅋㅋ
몇페이지 몇번인가요? 확인해볼께요~
맨 마지막 문제는 아마 작년인가 재작년인가 7월학평에 비슷한 거 있었던거 같네요
마지막문제는 작년 7월 학평 문제 맞아요^^
좋은글 감사합니다!!
도움이 되시면 좋겠어요^^
저도 시험장에서 중복조합으로 후딱 풀었죠 ㅋㅋㅋ
잘하셨습니다~
사진 커엽 ㅠㅠ
커엽? 귀엽다는 건가요? ㅋㅋ
이 문제를 중복조합으로 풀수 있다면 대단한 실력자겠는걸요 ㅋㅋ 저만 아는 줄 알았네~ 뭐 이래 ㅋㅋㅋㅋㅋ 좋은 칼럼 감사합니다. goat!!!
감사합니다^^
21번 첫번째 기본 풀이는 a를 기준을 case를 분류하는 것보다는 차가2n+1, 2n+2, 2n+3.... 이런식으로 case를 분류하는 것이 좀더 나아 보이네요 ㅋㅋ 오지랖 ㅋㅋㅋㅋ
밑에 세문제 각문제 연도랑몇월몇번 문젠지 알수잇을까요?
첫번째는 2006 수능 확통에 있을것 같고요.
두번째는 아마 제가 EBS문제를 살짝 손댄것 같네요.
세번째는 작년 7월 문과 30번/이과 21번 으로 기억합니다~