미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2등급 베이스에서 배울게 많은 책인가요 ??
-
컴공 쓴 애들 봐라 - 개발자(코딩충) 미래 전망 알려줌 1
코딩충의 미래 1. 취업하는 코딩충 코딩 쌩짜도 모르는 인간들끼리 모여서 AI한테...
-
수학 교과서 전 진지하게 개념 공부에 저게 정말 좋다 생각해요
-
시간 너무 많이 쓰고 싶진 않긴 한데,,
-
수린 게이 갔네 1
-
탭 배경 4
아래 아이콘을 다 빼보려다가 걍 원복..
-
여친구함 선착순 1명
-
9모 잘쳤으면 큰일 났을듯
-
기차타고 자취방 가는데 아직 안 잠..밤낮 돌리려면 커피사고 기차타서 안 자는게 맞나
-
국어 복습 0
국어 복습할 때 인강에서 나갔던 기출 지문 파일을 ebs에서 다운 받아서...
-
차단이 풀리는구나
-
확실히 새르비하던사람 다 자서그런가
-
얘네들 때문에 원서영역 성공이라는 헛된 희망을 품은 적이 있어서임 기대가...
-
이제 고2올라가는 학생이고 고3모고는 2~3정도 뜹니다 주변에서 국어기출은...
-
일어남 0
하 개피곤하네
-
물1 정규반 웰케 표본 높음? 기원쌤이나 이신헉쌤 현강은 복테보면 표본 되게...
-
얼버기 0
어제 메타 어지럽네
-
삼수 미적 확통 4
반수해서 연대썼는데 삼수 고민합니다.. 수학이 제일 아쉽습니다 종합적으로 봤을 때...
-
토트넘 15위네 1
강등권에 더 가깝네 선수 영입해서 한명도 제대로 안터지고
-
사탐 개좇밥들아 3
사탐 어렵냐.. 생지 2~3인데 생지 1가는거보다 사탐 만점 띄우는게 더...
-
이제진짜공부한다 3
쌍사까지 쌋다
-
재수를 해서라도 서성한중경 라인 공대에 가고 싶은 현역입니다 지금 화미생지를 하고...
-
김현우 ㅋㅋ 0
일요일반 라이브 스카에서 들었는데 ㅋㅋㅋㅋㅋ 웃음 참느라 힘들었습니다 ㅋㅋㅋㅋㅋ 왤케 웃기시죠 ㄹㅇ
-
어차피 그에 대한 치료는 길고 지루하고 현학적인데
-
무인시간이라 라면을 안 하네 아
-
그렇게 해서 배경지식을 쌓는거야 그래서 지금 읽고있음
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
친구할수있음?
-
더 안되는거 같다 문제 풀다가 막히면 고민하다가 멍때리는 것은 아닌가 자꾸 의식하고...
-
나 진성 이과(사문함)라서 나무위키 공부법도 하기시른데
-
첫 날 계획은 무계획이라 큰일이에요
-
왜 자꾸 난독증같지 글 여러번 읽어야 겨우 이해하는데....... 국어 때문에 죽고싶9나......
-
여캐일러 투척 3
음 역시 귀엽군
-
믓찌노
-
25학년도 6/9/수능 "독서 0틀"
-
이거왜이러는거냐
-
좋은 아침이어요 13
다행히 수술이 필요할정도는 아니라고 하시네요
-
윤석열 5
지지자들은 뇌가 없나 지둔 늘려줘서 빠는건가
-
임정환t 1
Limit 끝나고 개념 복습하고 바로 검더텅 들어가나요 아님 Impact까지 하고 들어가나요?
-
다 저장하고 계획짤때 봐야지
-
언제부터 받나요??
-
작년보다 4점이 오르냐 ㅋㅋ
-
파 마늘 파마 늘
-
여캐일러 투척 6
화2 정복 8일차 세이아 실장 기념
-
언미영화생 100 98 1 79 81 이러면 대치 시대 반배정 어떻게 되나요?
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..