미적분 문제 (2000덕)
첫 풀이 2000덕 드리겠습니다!
(+자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
청해 도중에 시도 때도 없이 졸 듯...
-
얼버기 8
사실 잔 적 없음
-
티라노의 아종 저 공룡이 한반도에서 발견됬다는데 진짜인가? 0
운지사우르스(학명:yehaun/muhuynunijy)는 노라기후기 (1억 523년...
-
서연고 빵꾸 + 23수능이랑 점수분포 비슷하니 23수능급으로 많이돌것이다 vs...
-
마리카락 얼정도로 춥습니다
-
옹알옹알 우꺄아 5
뀨우
-
지금 삼반수 고민중인 사람인데 작년 평가원 수학 6모 1(88점), 9모...
-
오노추 2
녹황색사회 - Shout baby
-
ㅈㄱㄴ
-
한바퀴는 돌까요? ㅠㅠ 2024년 2023년에는 돌았는데 2022년엔 안돌았는데...
-
올해 여행은 수능끝나고 가는걸로
-
안녕하세요 선배님들, 반수생인데 궁금한 점이 있습니다!! 8
안녕하세요 홍익대 사범대 입학예정인 학생입니다..! 수능에 아쉬움이 많이 남아서...
-
비상비상
-
지금 연세대 예비 1번인데 1,2등 나군 서울대 최초합해서 대학 거의 무조건...
-
기차지나간당 12
부지런행
-
결국 예비 42번 받았는데 3바퀴째에 추합될 가능세계 있음,.
-
예비예비예비 갑자기 최초합 ㄷㄷ
-
동덕여대 미대 최초합 했는데도 별로 안 가고 싶어하는 거 같음 근데 나였어도...
-
??
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
뭐가 더 쉬울까여
-
경찰대랑 사관학교는 어디쯤 하는 거 같음? 아예 평가방식이 다른 거 알고 있는데 개인적으로 궁금해서
-
죄송합니다 안녕히주무십쇼 모두
-
충북대 의대 7
충북대 의대 이번에 뉴스도 나오고 느낌이 좋진 않던데 충북대의대 가는게 나을까요...
-
가난이 군대같이 오리라
-
기분좋은 준딱뎀 0
5000원부터 환전 가능인데 5009포인트로 전환컷 거의 딱뎀 오늘 하루 좋은일이 있을거같아
-
레어가 팔렸는데 2
얼마안하는거다..
-
고양이 ㅇㅈ 1
-
다.
-
예쁘다 6
으흐흐
-
점공중에서 도저히 모르겠는것들이 너무 많아서.. 생물 558.14 간호 555.57...
-
생명과학1 섬개완 중 상크스 공부법좀 알려주실 분..? 4
현재 섬개완 수강 중 인데 상크스를 진도에 맞춰서 듣는게 나을까요, 아님 섬개완을...
-
외대 language ai 점공봐주실분 계신가요...? 0
저 스스로 분석하는중인데 정말 될지안될지 모르겠는상황이라..
-
수학 공통 난이도가 어떻나요..? 고2모고 비해 많이 올라가나요…? 고3 22랑...
-
아..
-
설수리고르고미적물2화2고른척하고싶은감성충만한새벽이다
-
다시 덕코를 모아보자 12
-
오랜만에 칼럼 작성 중에 심심하네요 아무 질문이나 해주세요
-
버리기 기능 없나ㅔ
-
@슈냥소환 8
-
이미많이올라서 잘모르겠다
-
배고파요 1
밥줘
-
레어화긴 11
나경??
-
뭐야 10
여장 무서워요?
-
턴해집회나 가라
-
고려대 보건정책관리학부 기균 예비 1번인 분 등록하시나요? 노예비라 가늠이 안 돼서...
-
안자냐ㅉ 0
에휴
임용기출인가
코 풀었는데 20덕만주세요
100덕주는츤데레뭐임
{f(x)}²=g(x)라 하자
0≤g(x)≤M², g'(x)≥2cosx
이때 g(x)=2sinx+2, M≥2라 한다면, g(x)는 주어진 조건을 만족하면서 발산하는 함수이다
'f(x)가 수렴한다면, g(x)는 수렴한다'가 참임은 자명
이의 대우 역시 참이므로, f(x)는 발산함
실례 하나만 찾는 것으로 답을 결정시키는건 힘들 것 같습니다ㅠ
생각해보니 이건 발산할 수도 있다는 증명이지 발산한다는 증명이 아니네요
그럼 항상 발산한다고 증명하라는 건가요
단조수렴은 왜 준거지
나앆시
아니 이거 발산이에여? 얼탱
수렴하는 g(x)가 있다고 가정하자
수렴한다면, lim g(x+1/2)-lim g(x)=0
평균값 정리를 만족하는, 즉 g'(t)≈0을 만족하는 t가 범위 내에 항상 존재해야 하지만, 그렇지 않으므로 모순, 수렴하는 g(x)는 존재하지 않는다
따라서 g(x)는 발산하며, f(x)는 발산한다
생각지도 못한 간결한 풀이네요..!
수열 a_n = f(2npi+3pi/2), b_n = f((2n+1)pi+3pi/2)에 대해 a_n, b_n은 각각 유계이고( |f(x)|<=M ) 증가하므로(ff’ > cos에서 양변 2pi 간격으로 적분하면 우변 0) 극한 L, L’으로 수렴. 이때 b_n-a_n도 수렴하고 b_n-a_n >= (cosx 2n+3/2파이에서 2n+1+3/2파이까지 적분한 거) > 0이므로 L != L’. lim x->inf f(x)가 존재한다 하면, 극한의 성질에서 lim (x -> inf) f(x)=lim n->inf f((2n+3/2)pi) = L이고 같은 논리로 전 극한은 L’과 같아야 하므로 모순.
MCT를 이렇게 사용하실 줄은 몰랐네요..!