심심한 기출분석 (230922)
게시글 주소: https://orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠 (x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부자남친만나기 2
제발
-
목매달러감
-
?(진짜 모름)
-
입시 후 몇년만에 비문학 지문 풀어보니까 확실히 쉬운데(역대급 지문이라 하는 것들...
-
친구가 없는데 공동체 역량을 어떻게 드러내냐고 아 ㅋㅋㅋㅋㅋㅋ 생기부 보는데 분량...
-
아프다 0
올해도 화이팅
-
노베 기준.
-
암산메타임? 1
난 암산 못한다
-
투표 ㄱㄱ 저는 두과목성적차이가 ㅈㄴ커서
-
오늘 추합인데 낼 바로 입학식이라네요.. 여행중이라 못가는데 이런거 빠지면 좀...
-
경제가 왜 꿀임 0
그럴바엔 신유형도 없고 표점도 높고 재미도 있는 생2하지
-
시즌 4번째 일정 변경입니다(스블 수1 기준) 노랑 부분 : 해당 일정 변경일에...
-
남캐일러 투척 10
-
작수 92인데 좀 감으로 푸는것같아서요 조정식말고 추천해주실 분 있나요??
-
이유가머임
-
등록금 고지서 휴학상태면 조회 안되죠?
-
에타도 인증 안되고 어디서 정보를 얻을 곳도 없는거 같은데...? 잔추된 분들은...
-
고연일체네
-
맨날 1 마이너스 1 이런거 대입해 풀었는데 1/3이런건 답이 없네네뭐 계수 가지고...
-
덕분에 커뮤에서 대학가기 쉽다고 조리돌림 광역으로 당하고 ㅋㅋ
-
한국사는 반영 거의 안하나요???
-
현역 때 생지 해서 각각 백분위 96 70 받았고(지구 그래도 3등급 이상은 떴는데...
-
지1 기준.... 철학 싫어하면 많이 안맞을까요
-
에 계속 잇겟음
-
조금 늦었지만 13
동국대 경영도 마지막 전화추합했네요 보잘것없지만 축하해주세요 ㅠ
-
공통은 안틀릴자신있다 진짜 ㅠ
-
수스퍼거 1
증후군
-
아직 안늦었죠..? 국어를 못해가지고 ㅋㅋㅋ
-
닉추받음 9
수연이가 들어간 닉을 창의적으로 바꿔주면 1000덕을 드리지 !!
-
근데 뭔가 올해는 3칸이 적정인 느낌...
-
수학 공1 미4 틀린애들
-
. 4
제곧내
-
오늘 추합됐는데 저번주에 전적대 탈퇴하고 또 탈퇴하려니까 재가입이 한달 뒤에 된다고...
-
아 썅 0
숭실대야 채플하고 전공탐색 뭐시깽이때문에 시간표 다시 만들어야하지나!!!!!
-
이화여대 새내기를 위한 새학기 수강신청 A to Z [기본편] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
-1수 강원의 vs. 20
재수 인설의
-
진지하게 어디감
-
재수때 수학 사설 1 컷 고정 재수 6.9 98 96 수능 3턱걸이인데 군대와서...
-
김범준 데리고오느라 돈 다쓴건가 생각할수록 개빡치는데 19패스 내놔.
-
나도 ㅅㅅ해봄 2
숭실해봤다는 뜻입니다
-
는 해본적있는데 연애는 못하겠음
-
ㅇㅇ?
-
성적대 96 96 1 99 99 연고대 장학 가능할까요? 0
과는 문과계열이고 학과는 경영,경제 빼면 상관없습니다 탐구는 사탐입니다
-
??
-
DK노원딜조합뭐지...
-
수능 논술 딱대라 미적 ㅈㄴ 열심히 할거야
-
649.67 컷 상당한 펑크는 맞는데 500점대가 붙는 핵펑크는 아닙니다.
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼
아사람 왜 닉언하나요