[자작문제 해설] 수1 삼각함수 문항
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비 한바퀴 돌아도 추합안될 번호대지만 궁금해요 한교 한문 성대 성균
-
다 먼가 매칭이 되네 ㅋㅋ
-
님도 빨리 내 닉 알아내라.다람쥐님 닉 ㄹㅇ 그 다람쥐가 지엇을만한 닉이네
-
푸앙대 전과 0
문과에서 문과로 전과하려고 해도 전과하려는 과 전공기초 들어놔야 하나요?? 그리고...
-
가끔 여자랑 연락할 때 힘들다고 하는 남자들이 있는데 4
여자랑 연락이 잘 안되는 건 니가 연락에 능숙허지 않아서가 아니라 여자가 너랑...
-
수정된 마지막 문단 제시문 일부
-
요네 1
ㄱ ㅡ다 음은 야스오
-
하
-
지역차별 1
안생길수가 있나 이거 어떠한 지역을 차별하는게 아니라 그냥 차별된 지역인듯 ㄹㅇ
-
흐흐흐흐 2
-
진짜 이 캐릭터 띄우고 비대면 과외해주나
-
점공 계산기 어느게 젤 정확할까요?? 셈퍼 99퍼로 설정하고 미니멈 보라고 하던데...
-
한국인 친구도 못만드는데 외국인 친구를 어케만드냐는 나쁜말은 ㄴㄴ
-
내 지인이 그럼 재수때 서강대 공대 걸까말까 고민하다 안 걸고 삼수했는데 건국대...
-
마계인천썰 ㅇㅇ 2
난 인천에서 태어나서 인천에서만 살았는데 예전에는 마계인천 카마인천 같은 별명 왜...
-
하 ㅅㅂ 진짜 대성패스 33만원 이걸 사야해 말아야해 ?? 6
존나 고민되내 어케 가격이 두배가량 오르지ㅜ 돈 좆도없는데
-
=지금 분명졸린데 아샷추 2리터 먹었더니 잠에못들어요
-
고한 조발기원 2
굽신굽신
-
에휴이
-
막상 댓글이나 글 달린건 없을때가 많음 왜그러지
-
비록 수능은 망쳤었지만 그래도 어느정도는 회복한듯 근데 뭔가 이럴때쯤에 억까...
-
S_n 이차함수 그려서 푸는거 이제 중요할까... 11
뭔가 최근에 이거 이용하는 기출이 아예 없던거 같은데
-
이해는 된다만 너무 이기적인건 아닌지
-
오늘 하루 1
행복하길..
-
대학 어디다니니? -아 저 그냥 지방대 다녀요 비틱질 못참겠다
-
주의사항이나 팁같은거 있나요
-
ㄷㄷ
-
에휴
-
극한상쇄!!!! 3
크아악
-
하지만 n수생은 말 안 듣지 반수 슈우우우우웃ㅋㅋㅋㅋㅋ
-
금요일날 나름 중요한(?) 약속이 하나 있는데 (공적인 자리는 아닌데 아무튼)...
-
새터가 그럴까봐 무서움 진짜 친한애들이랑 술마시면서 노는거는 억지로 친한 분위기가...
-
레어 하나만 사고 싶어요 1/31까지 갚겠습니다
-
인하대 자전 3
150명뽑는데 예비30 되겠죠?
-
친척 A : 사수씩이나 해서 원광대에 가니? 에휴.. 그래서.. 과는 어디니?...
-
칠한사람 특 0
프로필뮤직이 사라진모든것들에게 임
-
프로그램 처음써봐서 잘 모르겔음 https://link.chess.com/play/0p9bVt
-
ceoi 인수인계할때 communication electronic operating...
-
그냥 안잘래.
-
원기옥 오래 모았다
-
레어 가격을 상향 평준화 하면 레어가 다 팔릴까요?
-
Fm 일기나 올려볼까 17
근데 난 자체로 로스터 수정해서 쓰는데
-
몸이 예전같지 않음 게임 오랫동안 못하겠네 목아프고 눈 건조하고
-
공부에 방해되서; 그래도 님들 덕에 많이 웃고 갑니다. 3월에 봬요.
-
심지어 트위터하다가 걸림 ㅅㅂㅋㅋㅋㅋㅋㅋ 어케됐으려나 모르겠네 그때 게이게이 걸리기...
-
갑자기 든 생각인데 16
복마어주자는 캔버스 없이 허공에 그림을 그리는 거잖아 이거 엉덩이로 이름쓰기 아님?
-
엄청난 집중력 ㄷㄷ 공부하면 고수가 될 것임
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)