정말 멋잇는 문제 2
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고대 발표 1
내일 맞음? 나온다면 몇시?
-
보만다지진 4
??
-
여캐일러 투척 6
ㅇㅇㅅㄱㅇㄱ
-
레어 잘못 샀다 1
아악 내 만덕이..
-
늦은 저녁입니다
-
총액 200만덕
-
메디컬이던데 2023년도에 비해서 2024년도에 엄청 돌았던데 뭐 때문일까요?
-
고려대 건축사회환경공학부 (고대 건사환) 가능할까요? 1
지금 39명 중에 25등인뎁... 21명 뽑아요... 4차 추합이라도 괜찮으니 갈 수 있을까요...
-
내가 사거 싶은거 못사고 이상한거만 사짐
-
에혀.. 이 븅갓같은 세상에 인정받으려는 거 자체가 개짓이다 3
븅갓같은 세상..
-
ㅇㅈ 9
-
문학 황님들. 0
문학 맨날 3~4개 틀리는데 공부 어떻ㄱ ㅔ 해야하나요...?
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
그럼 투표 결과 7
수학 하는걸로 할게요 공수2 올려봄 이따
-
2m 여친 사귀기
-
수2도 해야겟지 6
햐 노잼과목..
-
2년반만에 찾아온 기회입니다 다들 레어 사가세요
-
고경제 교과 1
고경제 교과우수도 펑인가요?
-
근데 비싼건 왜케 비싼거죠?
-
Tomboy 위잉위잉 와리가리 Ohio Love ya! Paul Hooka New born
-
오르비 오래 하고 볼 일이네
-
아 씨발 6
스키마 레어 똑같은걸로 ㅈㄴ싼거 있었어 충동구매의 폐해....
-
근데 왜 빨리 읽어? 빨리 읽으니깐 내용 파악이 안되는거야 그러니깐 몇 번씩...
-
전 락스타 호소인이 아닙니다ㅠㅠ
-
https://orbi.kr/00071495666 전문적인건 전혀못하는데 그냥...
-
건동홍숙이라더니 국민대, 숭실대하고 비비네
-
부탁. 드립니다.
-
수능 준비하던 시절이 그리운 것일 뿐이지만
-
나 드디어....잊혀졌구나
-
레어 샀는데 7
이쁘긴 한데..... 이거 어따 쓰는겨
-
https://orbi.kr/00071500944/%255B%EC%A7%80%EA%B...
-
그 채점이랑 모의지원 안했는데 지금도 찡찡거리면 받아줘요?ㅠ
-
나를 써줘 6
써줘써줘써줘써줘써줘
-
진지하게 친구가 거의 없음 어케된걸까싶네 하….이정돈 아니였는데
-
님들 할거 투표좀 11
코딩 <<< 무저건 해야함 수학 <<< 그냥 하면 재밋긴함
-
국어 써줘 3
써줘써줘써줘써줘써줘써줘
-
오히려 좋?아
-
나였어도 찐따 과외쌤한테는 과외 안 받을거같아서 과외슨상 찐따라 싫다하는 글에 할말이없어
-
앞뒤 다 자르고 다짜고짜 소설 시작하는거 개빡침
-
빰빰빰빰
-
컨설팅 팀이 자기만을 위해 존재하지 않는다는 거임 팀이 받은 비슷한 성적대의...
-
이딴게 어딨어
-
사탐런 할말 5
일단 23수능 성적이고 국어는 백분위 96이상 안정에 수학은 평소 92 밑으로...
-
수능 1년도 안남았는데 진짜 개좆됬네 정신연령이랑 능지는 중딩때랑 똑같은데 ㅋㅋㅋㅋㅋㅋㅋ
-
우선 만족할 결과를 얻지 못한 분들 개인적으로 정말 아쉽다고 생각합니다. 저같은...
-
이원준t 해설에 대해 써주면 좋겟 슴
-
오르비 유입 1
나랏말쌈 님의 중세국어(ㄱ 약화) 글
-
살 수 있는게 많네 아이쇼핑 좀 해볼까
-
이건 차별이야
-
저도선넘질받받아봄 26
ㄱㄱㄱ
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음