재밌는 문제 풀어보셈요(10.16)(1500덕)
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
작수 48 백분위 98% 올해 47 메가 예측 98% 나왔어요 17제외하고 다풀고...
-
도태남이 되버림뇨...
-
회기가는중 17
근데약속시간까지너무오래남았다 2시간동안뭐하지
-
대학은 메디컬 설대 연세대 시립대, 나머지 명문대 라인 과는 공대 아니면 경제학과...
-
키빼몸 100 되는거 생각보다 너무 빡세다. 20대 초반에는 몸무게 고점이 키빼몸...
-
언매 미적 지구 사탐 1 어떰 제발 제발 알려죠 제발 진짜!!!!!!!!!
-
박선쌤 현강에서 받은 자료들입니다. 서바이벌전국, 데이브레이크 등등 있습니다....
-
인하대 안정박고 홍대인자전 경희대 지를라하는데 ..
-
운전면허 따는거 6
돈 많이 들어요? 운전학원 몇시간 필수 이런거 있다고 들은것같은데
-
초등 교육부 선정 800개 + 워마 중등 3권 + 워마 고등2권
-
"진실되게 투표한자는 올해 원하는 곳 갑니다..." 수능 현장에서 생명과학1 응시한...
-
그건 사실이라는 거임뇨
-
핸드폰으로는 안되나요?? 여행 중이라 pc로 확인하기가 어려울거 같은데..
-
과외가 ㅈ도 안구해지네
-
옷을 사야하는데 0
살빼고사야지 딱10kg빼고 사도록하겟음뇨
-
국어는 다맞은것 같은데 수학을 1문제를 완벽하게 푼 문제가 없는데 이거 가능성 있음?
-
여러분의견 ㄱㄱ
-
스승님께 예의를 갖춰라
-
미적 2컷 0
공2 미3 틀 80
-
중딩때 반년정도 하다가 학업이슈도 때려쳤는데 10-20이 국룰임뇨?
-
평가원 게이야 3
이미 채점 다하고 한쪽 구석에 방치해둔 거 다 안다 빨리 내놔라
-
나 응애. 에요
-
뭐가 ㅈ같을까
-
에듀셀파 여학생 기숙 갔었는뎅 .. 너무 좋은데.. 질답이 좀 불편... 좋은 곳...
-
[고려대합격자를 위한 꿀팁][사전공지]_고대 합격자를 위한 장학금편 1
안녕하세요. 고대에 처음 발을 딛는 우리 '아기호랑이들'을 위해, 2024년...
-
빨리와
-
스나는 그럼 trg-21인가요
-
10분위도 지원가능한 1학년때 꼭 지원해야되는 장학금 7
대통령과학장학금 이공계우수장학금 인문100년장학금(문과) 윤세영스칼라십...
-
그건 사실이란거임뇨
-
가채점보다 실채점이 더 후할 수도 있나요? 아니면 56789등급도 실채점이 점수 더 내려가나요?
-
수2를 쎈만했는데 13
시발점듀 복습하는겸 빠르게 해야할까요?
-
[사전공지]고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 0
아직 합격자 발표일 이전이지만, 미리 공유 드릴게요!! 고려대 25학번 합격자를...
-
한 2박3일로
-
휴지 한칸으로 일회용 코트임뇨
-
공군 컷 99 3
워드프로세서+기본 64 진로설계 1 한국사 한국어 능검 2 봉사/헌혈 8 텝스 2...
-
입김 나오네 4
춥긴 춥다
-
3급... 12
부동시로는공익을못받는 더러운나라
-
작년 컷이랑 비슷한 수준이라 올해 진입했는데 최저가 불안해서 3합 5/3합 6...
-
수12 해도될까요..! 지금 풀어봤는데 사점자리 두세개 빼고 다 모르겠어서요.....
-
미치겟뇨
-
독학gg 모타겟쏘
-
계단 오르기도 쉽지 않음뇨..
-
기하임. . .
-
키작남 여자들이 싫어잔뇨..
-
짜파궤리 무롤림 0
-
기하 8
내년 공대 졸업예정인데 메디컬 목표로 수능 칠 계획..!! 언매 생 지 이렇게...
-
갓반고 3점대는 일반ㅂㅗ다 더 빡쎄죠?
-
기존에 지1을 하고 있어서 화1을 다른과목으로 바꿀려고 하는데 추천 해주세요. 제가...
-
옮밍아웃하고 싶다
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다