재밌는 문제 풀어보셈요(10.16)(1500덕)
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 씹덕 아님 0
프사는 예뻐서 주워 쓰는 거임
-
책읽어요 3
재밌을거같아요
-
전 113
-
희망하는 과는 전전입니다!
-
책책책 1
책을 읽읍시다
-
아무튼 내가 한거 아님
-
77,000원 너무 아까운데
-
1. 고2 정시파이터 선언 초기 오전 5시 30분 기상 학교 5시 45분 등교 수학...
-
걍 돌파해
-
그런 건 없더라고요~
-
메가패스 환급에서 광운대 명지대 환급되는지 질문드려요
-
친구가 물어봄
-
03년생 국숭라인 공대 1년 다니고 입대해서 이번에 전역하고 수능봤는데요 간판...
-
나 연기계좀 보내달라고
-
그냥 이빨 다 털어버려야함 현실에서 개찐따새끼들임 ㅋㅋ 진심 정상적인 새끼 한새끼도...
-
만화에서 썩은내가 나는데 멈출수가 없다
-
떨어지면 담으면 돈복사가 된다니까 대신 뉴스는 잘 챙겨보시고
-
수능 실채점 결과가 나온 후에 고민하셔도 늦지 않습니다 어떻게 될지는 정말...
-
먼너래부르지 4
흠
-
입시판 뜨려고했는데 왤케 수능이 끝나고 시간이 지날수록 내가 힘들고 고생했던 기억은...
-
얼버기 6
-
전남대 학종 0
전남대 토목 학종 안정이 몇등급 정도일까요
-
없을지도 듣기차이가 너무 큼
-
인생 ㅈ되든말든 신경 안씀? 여르비만 투표해! 남르비는 결과보기만 누를수이써
-
힘들다 ㅠㅠ
-
완전 재수생 노래임... 시간은 참 빠르게 가 마음만 조급해져가고 내 곁에 너를...
-
맨날 뒹굴대다가 제대로 굴려짐 좋구나
-
문법과 비문학을 제외하면 노베입니다 하지만 비문학도 들어야 할것같네요 인강 강사를...
-
에휴
-
언매왜하지 4
음 근데 이성적으로 화작했으면 틀렸을 거같아서 잘한듯ㅇㅇ
-
내가 밤에 울고있으면 여자가와서 위로해주는거. . .
-
그러시는 이유가 무엇인가요? 궁금합니다
-
구라임
-
0. 소개 딱 이맘때쯤이 많은 학생들이 과탐 선택과목을 고민할 시기인 것 같습니다....
-
연필 쥘 때마다 계속 신경쓰이고 집중이 안되는데 어떡함요 ㅠㅠ
-
소송맞고 인생망한 바이탈 의사가 예과생한테 훈수듣고 반성하는 만화!비유가 ㄹㅇ 찰떡이네.
-
킹가원….
-
미적이구 아마 학교 다니면서 반수 할 듯 싶어요. 평가원 1, 2 진동하고 이번...
-
시부랄 기상청!!
-
수학 1등급까진 노력으로 된다 (x) 수학 1등급이 가능한 능력치를 지닌 사람이...
-
2306 66/24 90점 136/98 2309 63/19 82점 119/81...
-
이제 논술 다 팔아먹었으면 정확한 등급컷을 내놔봐라 이말이야~
-
다른 대학들은 홈페이지에 바루 있던데 어디서 출력해야하는지 모르겠네여 아시는분들 답변 부탁드립니닷
-
선착아님)덕코 19
댓단사람 3명
-
수업시간에 자습해도 뭐라 안해서 순공확보 개잘됨
-
내년 고3 올라가는 국어 노베인데 노베한테 두 강사중 누가 더 좋은지 궁금합니다....
-
진학사 작년컷 3
진학사에서 낸 내 점수랑 작년 컷 비교해봤을때는 최초합인데 예측은 3칸인거면 지금...
-
그럼 과에서 개 찍히나요?? 과에서 따 당하나요?
-
언제봐도노래를참잘뽑았어
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다