합성함수 인식부터 치환적분까지
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다음 편 링크 남겨드립니다.
0 XDK (+10)
-
10
-
이번엔 좀 하드코어할 것..
-
✊️✊️ 조기 발표를 기원하던 낙지7칸좌 제 개인적인 호감고닉이던 예비서강대훌리햄...
-
진심 욕 먹는 거 뻔히 알면서 지 얼굴 올린다고..?
-
그건 중대 그럼 중대보다 좋은 대학은 강대 퓨하하하하하ㅎ하핫
-
야차룰 하실분 0
본인 스펙 192/85 유도2단 검도3단 3대345 롤브론즈 파스타잘만듦 0개국어...
-
저렇게 생겨놓고 과외생한테 고백받았다고 한거였어? ㄷ ㄷ
-
키 커지고 싶다 1
목표 183이었는데 멈춘듯...
-
재수강 하려고 기말 안 봤는데 c+ 쁨.... 오마갓
-
그냥 병신이었네 흠...
-
우웅
-
새로고침 계속하면서 못자는중
-
ㅋ.. 중앙대 푸흡킥킥킥
-
야망이 없다 1
원랜 잇엇는데.. ㅜㅜ삶에 긴장감이 없다. 위기다.
-
자짤 수정해옴 7
저격처럼 느껴질까봐 아이민이랑 닉 가림
-
제법 페인같아요(라고 할 뻔)
-
오르비언들 아프지마세요 13
-
잘자 내꿈꿔잉
-
합격 발표할때까지 할게없는데 왜 잠 그 시간에 오르비나 하지
-
ㅈㄱㄴ
-
나이스보다가 발견 이정도면 ㅍㅌㅊ인가..?
-
이거 걍 자짤로 쓸까? 13
걍 웃음벨인데
-
그만할게요 네..
-
니들 안자냐? 12
사람이 오천만명잇네
-
무교이지만 저 구절은 참조아요
-
이럴때 푹 자는게 중요한데....걍 조질게
-
인증 댓글 번역해줌 10
시발련아 : 넘사급 존잘 꺼져라, 이런 분이 왜... : 존잘 오 괜찮은데?,...
-
ㅇㅈ 5
오늘도 안암 방향으로 기도하고 자겠습니다..
-
ㅈㄱㄴ
-
배가 고파요 1
밥 내놔
-
엉엉
-
ㅇㄷㄴㅂㅌ ㅋㅋ
-
몇 명 안 뽑는 소수과라 볼 때마다 피말리네 점공에 없는 지원자들까지 생각하면 ㄹㅇ..불안
-
황벨
-
ㅇㅇ?
-
왜클릭
-
오랜만에 ㅇㅈ 13
광년이 버전으로다가
-
삼각형 ABC의 두 변 AB,AC에 내린 두 중선이 서로 직교한다....
-
자랑하나만할게요 2
캬
-
25수능 백분위 언매 92 미적 98 영어 2 물리1 94 화학1 97
-
어그로 ㅈㅅ 쌍카풀 짝짝인데 쌍카풀 제거 수술도 있나요? 있다면 비용도 쌍수만큼 들련지요.
-
뭐 중앙대중앙대 거리더니 사실 불교엿음?
-
가즈아
-
https://youtu.be/7IYlt_OcdVE?feature=shared
-
차라리 미적 → 기하 로 하고 과탐하는 건 어또련
-
사이테스 부속서 1에 속하는 풀떼기입니다 국제상 멸종위기종에 속해서 서류를 많이...
-
내 인생 신조 4
누군가 너에게 해악을 끼치거든 앙갚음하려 들지 말고 강가에 고요히 앉아 강물을...
-
고3 커리큘럼으로 일등급수학을 푸는데 이게 맞나요?
-
중평 2
그만 낮추세요 (다군 중대일동)
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당