[물1 이야기] 물1에서 용수철 단진동이 등장하기 힘든 이유
안녕하세요. 쓸데없는 이야기나 하러 왔습니다.
물1의 n제나 각종 모의고사들을 둘러보다 보니 용수철문제가 정말 많이 보입니다. 하지만 어째서인지 평가원은 개정 첫 년도 이후로는 용수철을 그렇게 안 다루고 있는 모습을 보여주고 있습니다. 이에 대한 제 생각을 간단하게 적어보려 합니다.
1. 평가원의 문제 스타일
문제는 일종의 관측현상을 서술하는 것입니다. 문제 상황이 실제 상황과 달라서는 안되니까요. 누군가가 고도의 실험으로 데이터를 가져와서 딴지를 걸면 귀찮거든요.(안 할거 같다고요? 평가원 게시판 가보셈요. 재밌는거 많음요.) 그렇기에 관측에 유리한 상황의 데이터를 제시하여 딴지 걸 상황을 최소화하는 경향이 있습니다. 예를 들어서 '정지'한 상태라거나, 가속도가 0인 상태라거나, 저런 특이점들을 문제로 제시하는 경우가 많다는 겁니다. 물론 가속도가 0인 상황은 관측이 쉬운건 아닙니다만, 물1의 한 단원인 등가속도 운동과 달리 용수철에서의 단진동은 가속도가 계속 변하는 상황이므로 가속도가 0인 상황이 다른 상황에 비해서는 훨씬 특이점이라는 것은 어쩔 수 없으니까요. 한 번 문제를 보도록 하죠.
210620입니다. 용수철 문항도 몇 가지 유형이 존재하는데, 쓰기 귀찮으니 생략하겠습니다. (나), (다), (라) 상황 모두 정지한 상황을 제시해 주고 있습니다. 물체의 운동 상태를 쉽게 '관측'할 수 있는 상태이니까요.
211120입니다. (가)에서 정지한 상태를 주었고, (나)도 풀어보시면 알겠지만 저 상황이 평형점의 상태, 즉 가속도가 0인 상황입니다. 이런식으로 평가원은 몇 번 용수철을 깔짝하다가 후퇴를 해버린 것이죠.
2. 저런식으로 계속 내면 되는거 아니냐?
그럼 솔직히 너무 쉬워집니다. 공식하나 딸깍하면 끝나거든요. 그 공식을 한번 보도록 하겠습니다.
(평형점에서 x만 큼 떨어진 위치에서의 운동에너지)=1/2kA^2-1/2kx^2 (A는 단진동 진폭, x는 평형점으로 부터의 거리) 해당 공식이 성립합니다.
증명을 해보도록하죠.
i) 수평면에서
수평면에서의 상황은 굉장히 쉽습니다. A만큼 늘린 용수철에 질량 m인 물체가 달려있다고 생각하면, 중력 퍼텐셜 에너지의 변화는 0이니 당연히 탄성퍼텐셜 에너지의 변화는 물체의 운동에너지로 가겠죠.
ii) 중력장에서
사실 이것도 i)의 상황에서 mg만큼 운동을 shift를 건 것과 같지만.. 이는 한번 수식으로 증명을 해 보겠습니다.
용수철에 물체를 달았고 처음 위치에서의 중력 퍼텐셜 에너지는 0이라고 하겠습니다. 즉 물체의 역학적 에너지는 0인거죠. 질량은 m 중력가속도는 g, 진폭은 A, 용수철 상수는 k입니다. kA=mg이고 용수철이 A만큼 내려온 상태에서 물체의 운동에너지는 중력터텐셜 손실-증가한 탄성퍼텐셜 이므로 K=mgA-1/2kA^2=1/2kA^2이 됩니다. 이제 x만큼 떨어졌을 때 운동에너지를 구해봅시다. 중력퍼텐셜의 손실은 mgx, 탄성 퍼텐셜의 증가량은 1/2k(A+x)^2-1/2kA^2=kAx+1/2kx^2입니다. 즉 운동에너지 변화량은 1/2kx^2이 되므로
x에서의 운동에너지는 1/2kA^2-1/2kx^2이 성립합니다. 증명 끝 (기울어진 곳에서도 당연히 되겠죠?)
3. 그래서 저걸로 문제 풀림?
평가원 문제는 눈으로 풀립니다. 위의 문제들을 다시 보도록 하죠.
d가 평형점임을 읽었고, 2d가 진폭인 단진동입니다. 즉 x에서의 운동에너지는 2kd^2-1/2kx^2입니다. 운동에너지의 최댓값은 x=0일 때 이겠죠. 즉 2kd^2=2mgd이니 ㄷ은 맞는 선지입니다.
여기서도 0.1만큼 늘어나 있다가, 0.05가 되는 상황에서 평형점 임을 찾았다면, 진폭은 0.05인 운동입니다.
A와 B를 하나의 계로 보면 계의 운동에너지는 1/2 X 200 X (0.05)^2-1/2 X 200 X x^2인데 평형점이므로 x=0입니다.
즉 1/2 X 200 X (0.05)^2이 계의 운동에너지 이고 A의 운동에너지는 이의 2/5만큼이죠. 또한 용수철에 저장된 에너지가 (나)에서 1/2 X 200 X (0.05)^2이니 답은 2/5인겁니다.
4. 마치면서
진폭이 감소하는 형태의 진동인 DHO, FHO를 다룰 순 없고, 평가원이 문제를 내는 특성과 약간의 공부면 용수철문제는 그냥 눈으로 풀리는 기현상이 일어나 버리니.. 평가원은 개정 첫 년도를 이후로 단진동의 형식으로 용수철을 안 다루고 있지 않나 생각이 듭니다. 물론 어디까지나 저의 생각이고 제가 인강 경험이 없는지라 다른 강사가 이미 한 이야기이거나 반대로 말씀하셨을 수 있을테니 비판적으로 보시길 바랍니다. ㅂㅂ 물1 노잼.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오랜만에 마크 0
재밌었다
-
강기본 -> 강기분
-
실친이없음
-
다른커뮤에서 보던사람을 오르비와서마주치네 삐슝빠슝임이거
-
1년동안 사람 안을 기회가 없었다 손 들어잇
-
뉴비 오프닝 5
백일 때 스카치갬빗흑일 때 상대 e4면 오픈게임 상대 d4면 잉글런드 갬빗해요....
-
마크도 공부해야 1등급 나오겠네
-
3시자는사람은나약함
-
ㅇㅈ합니다 3
팜하니나 보고 가라
-
할거추천받아요 6
ㅠㅠ
-
알아보는사람이3명이나있네….이상한글은안써서다행이다 휴
-
정시의벽<< 못생긴 거 알고 절대 인증 안 함
-
현우진 시발점 1
20분동안 1번에서 19번까지 15번 빼고 다 풀었는데 시발점 들어야할까요? 예비고3입니다
-
미쳤네 근데 이러면 413~416 다 튀어버리고 꼬리 멸망해서 실지원 후 최종컷은...
-
저번 그 사람 보고나서 절대 못하겟슴 ㅋㅋ
-
대학 2급 오르는정도라는데 진짜에요?
-
수락 안하는게 나음?
-
이즈 굿 4
-
지금 갈 건 아니고 원서영역 정리될 때까지 있을 거긴 해요
-
도리깨 에임 제외하면 에임 필요없는 새끼 궁극기 하나는 개사기인 새끼 쿠키로 살리는...
-
안자는사람더코드림 16
선착순네명
-
선넘질받 17
이러는 글에서 선 넘는 질문 별로 본 적 없음
-
ㅇㅈ재업 18
도파민이 필요해서 마지막으로 트라이 해봅니다
-
저처럼!
-
걍 대성쪽에 새로찍는분들거 들을까요
-
강기분이나 듣고 자야지..
-
10초에 글 1개씩 지워도 하루동안 글을 다 못 지움 13
어이가 없네 그냥 ㅋㅋㅋㅋ
-
리리 같은 똥캐로는 이길 수 없어 ㅠㅠㅠㅠ
-
how
-
꽤 열심히 했는데 아니 3일치도 못지웠다고 아직.. 똥글을 얼마나 싸댄거뇨
-
바둑도 수읽기 싸움 들어가면 재밌는데 포석은 재미없고 체스도 한번 시작해볼까?...
-
넘 좋당
-
잠자기
-
부산은 막 추천이 쏟아졌는데 대전은 성심당 성심당 성심당 일거 같아 뭔가 좀 두렵군요 ㅋㅋㅋ
-
언미물화 질문 받습니다 10
언미물화 질문 받습니다
-
박기호쌤 논술 0
박기호쌤 논술수업 현강 들을까여 아님 대치 다른학원 다닐까여 로고스같은
-
일신우일신 과목 별 기본적인 개념에 대한 이해와 적용을 중점적으 로 서술한...
-
시간 ㅈㄴ 빠르노
-
세번째 자리 0이면 딸피 맞는거 같기도
-
05가 애기취급받던때가있었는데...
-
내 인생의 절반을 줄테니까, 네 인생의 절반을 줘!
-
이유:내가 04라서 03부터는 나도 몰루
-
옛날엔 안 그랬는데 13
요즘 격겜 / 리겜 류가 좋아짐 틀 되어가는 중
-
재밌습니다
-
잔다..
-
리리 니나 샤오유 내 모스트 픽들 예쁘고 쉽?고 재밌음
-
이번에 2
사문 어려웠었어요 ??
-
나만운없네 8
딩선족다쳐내
단진동하기