회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[속보]합참 “북, 경의선 폭파도로에 대전차구 조성” 1
합참 “북, 경의선 폭파도로에 대전차구 조성”
-
언미영물지 100 100 1 48 44 어디까지 가능할까요..??
-
05모여라 3
나는혼자가되기싫다, 서러워서못살겠다
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
오늘도 잘생겼군 1
출격
-
다들 백수면 0
뭔가 대책이 나오지 않을까 하반기 채용 ㄹㅇ 씹망인데 상반기가 막차였던거 같음 내년에는 과연....
-
문학 보기만큼 0
국어 방법론에서 많이 갈리는 논쟁도 없을듯
-
독서 풀이 순서 0
1.독서론ㅡ첫번째 지문ㅡ가나ㅡ과학 기술 2.독서론ㅡ첫번째 지문ㅡ과학 기술ㅡ가나 님들...
-
탐구 3.. 하.. 탐구 3이 더 쉬울까요.. 기출 풀면 다맞는데 사설은 맨날...
-
gkrdbjs dkfqk rkdiwl
-
전 솔직히 하루당 2만5000원 꼴인데 ㅈㄴ비싼데 딱히 해주는것없다고 느껴서 아까움
-
나의 무의식 0
-5+루트5^+12^ =-5루트25+12 =1 어? ㅅㅂ 아하 -5+루트+169네...
-
어디서 나온건지 잘 알겠는데 문제가 안풀림ㅋㅋㅋ
-
수1 질문 1
유리수 지수로 표현을 n홀수일때 음수일때 왜 불가능하나요
-
올해 현대시 중요작가중에 2분이 바로 김수영,김춘수 입니다. LEET연계...
-
안그래도 올해 취업 뒤지게 안되는데 다들 백수면 눈치 안보기 ㅆㄱㄴ
-
정줄 놓고 풀었더니 81ㅠㅠㅠㅠㅠㅠ 진짜 에반데
-
빨리 배터리를 바꾸던가 해야지 무슨 저전력모드는 싫어.
-
손담비 우르 1
여러 히~ 알면 개1추
-
더데유데 시즌2 0
빈칸 의문사 뭐지 진짜…. 영어 감 떨어졌나ㅠ 겨우 2등급 나왔네
-
모기 왜케 많지
-
내년 수능 응시예정인데, 시발점 대수,미적분 들어도 관계 없겠죠? 0
현우진T 조교님들은 되려 대수랑 미적분을 들어라고 하시는데 들어도 크게 상관없겠죠?
-
느려도 돼 1
마음을 둘 곳도 없고 더 갈 곳도 없는 슬픈 거북이 한 마리 상처가 많아 너 혼자서...
-
있으신분 ㅠㅠㅠ 답지를 집에서 잃어버렸어요
-
28번 푼사람 있음?? t랑 넓이값 계산할때 x축과의 교점값이 서로 관련이 있어서...
-
파이널디렉션 끝내기vs빌드업 문제 풀면서 회독
-
매년 찝찝한게 극갈래인데 올해는 더 신경이 쓰이는 갈래이기도 합니다. 극갈래...
-
11덮 국어 90 수학 92 영어 93 사문이랑 생윤은 말아먹음(사문은 9월쯤에...
-
오른발 3개 왼발 1개 아파요 흑흑
-
수학안풀리네 7
오랜만에 100분 꽉채웟다.. 내가싫어하는 유형만 짬뽕이엇서...
-
나이스 6
-
국수영 생윤 사문 100/80/1/44/44 생윤사문 실모 풀땐 50 잘 나오는데...
-
(1) 현대시 비연계 -> 할매턴우즈급 비연계 (2) 고전시가 관동별곡 +...
-
풀게 너무많네요,,,그냥 빨리 확통.하러.가고.싶.은데,,,
-
양심이 뒤진건가 한두번도 아니고 매일임 러셀 목동 hs관에서도 한명 있었는데 어딜가든 있네 ,,,
-
헤비옯창이면 0
매체는 잘 안 틀릴까?
-
좀만 자야지 3
30분뒤에 깨워주셈
-
아 인증뭐임 1
못봤잖아
-
FULL CHANGE 생각이 완전히 바뀐다 내가 새롭게 바뀐다! 내가 완전해지는...
-
1~9 무난한 문제들 9번에서 삐끗해서 두번푼건 비밀 10 계산하기 편할거같은...
-
저는 수학만 쳐패는중
-
가위눌리는거랑 동시에 일어남 공포영화같은 악몽을 꾼 담에 질식하는 느낌이 들면서...
-
국어 > [강대모의고사K 10회] 공통, 화작 > [수능특강 독서] 3부 2회...
-
오늘부터식단시작 4
우둔살먹고울었다
-
이감만 보면 0
3-1-1-1-1-4 이게 맞냐고 안정된듯 하다가도 ㅈ박아버리는 개같은...
-
피곤하다 피곤해
그게 먼데 십덕아
수학과 가면 배우나요 대학수학 너무 하고싶네요
공대가면 할걸요(진짜임)
저게 그래프로 그리면 용수철같은 모양으로 파동성같은것을 나타내기에 최적인걸로 앎
맞워요
저도 아직 안배워서 모르겠지만 저 오일러 공식 자체는 복소수가 쓰이는 분야에선 활용도가 매우 높은듯
수학관련 직업을 하고싶은 입장에서 흥미롭군요
저도 수학과 지망인데 이상한 식 보면 흥분해요.
ㄷㄷ
실수한 것을 열심히 부정해야한다는 교훈인가요
호머식 인생을 살아야 합니다
마지막은 뭔가 이상한데오 ㅇㅅㅇ
왜 부정임 실수값이 떡하니 나오는뎅..
n이 0인지 1인지 2인지에 따라 값이 달라지죠
뭐지 진짜네
근데 이해가 안가는데 진짜 뭐지
생각응 하고싶긴한데
물리수특풀러가야지 ㅇㅅㅇ
저걸로 고3때 세특 쓴거 기억나네욥
저도 복소학쪽이나 위상수학같은걸로도 세특 많이 채웠는데
결국 정시할거면 뭐하러 열심히 살았나 싶기도..
수학을 배우면 배울수록 더욱 아름다워지는공식
그래서 왜 수학 점수가
니ㅇㅁ
ㅠㅠㅠㅠㅠㅠ