[수학] 혹시 시험시간이 부족해?
안녕하세요
수학강사 이대은입니다.
오늘의 주제는
같은 문제를 푸는데 걸리는 시간이 다른 이유
에 대하여 글을 적어보겠습니다.
참고로 제가 수업대상이
중상위권이므로
내용이 중상위권에 포커스가 맞춰져 있음을
참고해주세요!
자 문제부터 보시죠!
눈풀로도 이해할 수 있도록
나름 가벼운 문제니
꼭 이해해보세요! :)
22학년도 수능문제입니다.
바로 본론으로 들어갈게요.
제가 수업 때 늘 강조하는 부분인
문제를 보다 빠르게 푸는 방법은
크게 봤을 때 두 가지입니다.
1. 문제에 들어있는 유형파악을 하느냐
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
이 두 가지를 잘할 때
남들보다 빠르게 답을 구할 수 있습니다.
위의 방법을 구체적으로 하나씩 설명해드릴게요.
1. 문제에 들어있는 유형파악을 하느냐
우선 이 문제는 크게 봤을 때
다음과 같은 두 가지 유형으로 이루어진 문제입니다.
1. 다항함수 구하기
2. 두 접선이 일치하는 경우
유형은 파악했으니
각각의 유형에 대한 풀이법을 적용시키면
답이 무조건 나오게 되어 있습니다.
위 유형에 대한 풀이법은 다음과 같아요.
유형소개를 하는 글은 아니니
풀이법만 소개하고
넘어갈게요!
빠르게 푸는 두 번째 방법에 대하여 설명할게요.
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
위의 예제에서
모든 조건을 해석하면 다음과 같은
네 가지의 관계식이 나와요.
함수는 삼차함수이므로
위에 주어진 네 관계식을 이용하면
삼차함수를 구할 수 있습니다.
이때
에 주어진 관계식들을 적용시키면
미지수의 개수와 식의 개수가 일치하므로
연립을 통하여 각각의 미지수를
구할 수 있습니다.
그렇지만
학생들 중 누군가는
단순히 대입하여 연립을 통해 미지수를 구하지 않고
주어진 조건들의 유기적인 관계를 파악하여
계산과정을 압도적으로 줄이는 경우가 있습니다.
에서 보면
두 점
를 지남을 이용하여 함수가
과의 두 교점이 주어짐을 이용하고,
를 이용하여
위의 직선이 접선임을 이용할 수 있습니다.
따라서 위의 관계를 이용하면
여기에 마지막 조건인
를 이용하여
최고차항의 계수만 구하면
답이 나옵니다.
이렇게 수학문제는
어떻게 푸느냐에 따라 풀이에 소요되는 시간이
많이 차이가 납니다.
물론 모든 문제가
이렇게 짧은 풀이가 있는 건 아니지만
지금 이 예제가 22학년도 수능인 만큼
무시할 수 없는 부분이죠!
이런 생각은
대단한 테크닉도, 수학적 지식도 필요한 게 아닙니다.
이런 건 태도의 문제입니다.
문제를 풀 때 태도는
습관처럼 바꾸는 게 상당히 오래걸립니다.
따라서 수학공부를 할 때
단순히 답을 구할 수 있음
에만 만족하지 않고
어떻게 구해야 가장 효율적인지
도 학습해야 합니다.
이번 글은 여기까지입니다.
글을 적기 시작한 게 새벽 4:30인데
벌써 8:55네요..
고생하기도 했고,
다음에도 유익한 글로 돌아올테니
좋아요, 팔로우, 댓글
해주시면 매우 고맙겠습니다!
정규반 수강신청 링크
https://academy.orbi.kr/intro/teacher/466/l
수학 공부법 1회 특강 신청링크
https://academy.orbi.kr/intro/teacher/503/l
공부법 특강 수강후기
1. https://orbi.kr/00067814750
2. https://orbi.kr/00067822140
3. https://orbi.kr/00067823604
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+1,000)
-
1,000
-
8일이후 바꿀수있다던데
-
상승곡선?질문 1
1학기_2.0/2학기_2.0 2학년 1학기_1.0/2학기_1.0 VS 1학년...
-
뭔일이다뇨 2
-
Mbc 급진좌파 가짜뉴스 공장장인 어준이의 보급형 러인업으로 가짜 조작 선동을...
-
왜냐하면 미점공 추합자나 군외 혹은 기타 사유로 인한 예상하지 못한 추합이 제일...
-
내 니지카
-
16센치 피아노 도-도임 남자 중에 나보다 손 작은 사람 못봄ㅇㅇ
-
안녕하세요 5
쌈무 보고 가세용
-
ㅈㄱㄴ
-
12년생. 나보다 훨 잘함
-
산책간다!! 3
일주일에 한번만 할 수 있는 동네산책입니다
-
진짜임뇨
-
과외 가능실력 5
미적 99 아주공대 과외 ㄱㄴ한가요
-
후후이 돈 벌 의욕 충전 완료
-
나 경상대인데 내가 젤 대학 낮은듯 ㅠㅠ
-
발이 300임 2
진짜임
-
생기면 어케될까요
-
이 되고싶네
-
반수 못하고 등록금 저렴하고 인기과 to 많다는 가정하에 참고로 백령도 위치
-
평가원 #~#
-
키가 340임 6
어캄
-
냄새 다퍼지네 쩝
-
계속 사랑받는지 확인받으려고 하고 집착하고 버림받을까봐 불안해하고 우울증 동반되고...
-
노래 잘하는 사람보면 그렇게 멋있을수가 없음ㅋㅋㅋ +목소리 좋은사람
-
얼굴 하얘지는 거 여드름 흉터 제거 이런 것도 막 되나요
-
자퇴현역 근황1 5
강기분 언매 공부중
-
여기서 하는 거여
-
사람 아니야ㅠ 밖에 생각이 안남
-
그때면 정리됐겠지
-
면도 하 하기싫다 나가야하는데 그냥마스크쓸까
-
이번에는 문과/이과 비슷한 평백으로 한의대 컷이 형성된 것 같은데 이번에 사탐런이...
-
다군 15명 모집 예비 15번 가능할까요 ㅠ
-
의공학 또는 인공지능 진학에는 생명 보던 지구가 나을까요?
-
환불하고 추합 학교 등록하는 거죠?
-
에혀 2
잠이나잔다
-
헌혈을 아무리 해도 20
바늘 꼽는 그 순간은 무섭네요
-
뭔진 모르겠지만 0
눈팅만 해야할것같네요..중립기어
-
제 디시콘 ㅇㅈ 2
-
틈새 ㅇㅈ 6
-
숭실 vs 아주 3
현재 청주 거주중입니다
-
작년 강기원 1
작년 강기원 공통반 개설 안했음?
-
고수들 다 성불하거나 사탐런 해서 이제 작년정도 난이도에 컷은 낮아질듯 아싸
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
음음 역시유용하군
-
수능악귀 결과 4
반수생 ㅁㅌㅊ?
첫번째 댓글의 주인공이 되어보세요.