칼럼)함수의 불연속을 보여주는 세련된 방법
바로 "평균변화율과 극한을 이용하여 미분계수처럼 보이게 만들기"....입니다
이건 제가 스스로 문제를 만들다가 올해 1월 초 즈음에 생각해낸 방법인데요.
혹시 다른 사설 N제나 모의고사에 이미 나왔었어도 이상하지 않다고 생각합니다.
더군다나 앞으로 평가원도 써먹을 가능성이 있는 소재라고 생각합니다.
제가 1월달 우진 공모에 보내봤다가 광탈한 문항인데요....한번 같이 봅시다.
네. (가) 조건을 한 번 잘 살펴볼까요?
생긴 건 미분계수처럼 생겼는데 뭔가 좀 이상합니다.
그렇죠. f(x)-f(-1)이어야 하는데 빼기가 아니라 더하기네요.
f(3)과 f'(3)이 0이고 그 값이랑 같다고 하는 거 보니
미분 계수의 꼬라지를 하고 있는 (가)조건의 극한식은
분자도 0으로 수렴하고 있으니, 분자 역시 0으로 수렴해야 함을 알 수 있습니다.
따라서 x->-1+일 때 f(x)의 극한값은 함숫값과 부호만 다르다는 것을 알 수 있겠죠.
그리고 그(가) 조건의 극한식의 값은 0이라고 했으니
절댓값 f(x)가 -1일 때 미분계수가 0이 됨을 알 수 있겠네요.
(다)에서 f(x)는 오직 x=-1에서만 불연속한다고 했고, 여기서 극값을 가진다고 했으므로
f(x)의 개형은 총 두 가지의 그림으로 그려질 수 있습니다.
그것이 목적이 아닌지라....궁금하시면 혼자서 풀어보시면 되겠습니다.
이 문제는 오류가 있기 때문에 푸시다가 "음?"이라는 소리가 나올 수도 있지만
그럼에도 불구하고 답을 내시기엔 그래도 충분할 겁니다.
이렇듯 극한값과 함수값이 언제나 같지 않다는 사실과,
특별한 상황 속에서 평균변화율의 극한값과 미분계수 라는 개념을 통해,
함수의 불연속을 아름다운 형태의 조건으로 제시할 수 있답니다.
어떤가요?
어쩌면 수능 문제 푸는데 쓸모가 없을 수도 있지만
그래도 조금 사설틱(?)한 문제를 통해 우리가 알고 있다고 자부하던 개념에 대해서
정말 제대로 이해했는지에 대해 성찰해 볼 수 있는 기회였을 거에요!
다음번에도 기회가 있다면 종종 생각해볼 거리들을 들고 와 수학칼럼을 가볍게 써보도록 하겠습니다.
유익한 도움이 되었다면 좋아요와 팔로우 한 번씩 누르고 가 주세요!
제겐 힘이 됩니다!!
P.S)
지오지브라 다루는게 서툴러서 그런지 그림이 조금 보기 불편하더라도 양해 바랍니다 히히
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니.. 47이 2라는 사람 3이라는 사람 44가 4등급이라는 사람.. 참 뭐 하나...
-
명문대생들이 부럽다
-
저거 Z누백 만점자 비율이 아니라 과탐 전체에서 상위 몇퍼에 해당하는지 나타낸 거라...
-
새벽의학교도서관 7
사람업서서좋네요
-
내가 자길 좋아하는 줄 아는거면 내 행동에 문제 있는거임?
-
재밌음뇨
-
에리스도 공부하는데 쌩양아치들 아님?
-
파란문법 삽니다 1
많이 더러워도 괜찮아요 가격 선제시해 주세요
-
https://blog.naver.com/xoxerre/223672949704
-
님들아 13
지금 시중에 500있는데 이걸로 메가스터디, 대성마이맥, 교제, 사설 모의고사,...
-
요즘은좀그나마나아진듯
-
걍 아무한테나 임신공격 하면 안되나
-
바램10일차 2
무언가를 간절히 바라면 그게 이루어진대요 지구 2컷 37 10일차
-
https://orbi.kr/00070214245 음..,ㅜ
-
모비딕 재밌네 7
흐흐
-
가보자가보자
-
메가스터디 못들어가고 있음 ㅋㅋ 성적창은 더더욱 보기 싫어
-
음음
-
작년 경쟁률 5. 몇이라서 실제로 70명 지원했는데 지금 진학사실제지원자만 90명...
-
이층침대 재밌네 6
흐흐
-
외모메타구나.. 4
낄 데 없는 못난 옯붕이는 울어요
-
눈물이 쥬륵
-
내신에서는 (못해도 3등급) 나오는데 수능 공부를 안 해봐서 공부할 방법도, 문제...
-
개깜놀했네 지금도 손이 벌벌떨림
-
미용목적이라는 말 들을까봐 살짝 불안불안 짜증짜증한 느낌
-
내컴플렉스임뇨
-
박선쌤 현강 인강 차이 얼마나 나나요? 코어특강 시작할때쯤부터는 현강 갈거 같은데...
-
그거슨 서강대 전자공 엄마가 알려줘서 알았는데 왜 서강공 나왔는지 이해가 안감...
-
현역07, 고2모고 평균 2등급 화작 기하 지구 세지
-
제 최종목표는 6
미국 대통령 영부인임뇨
-
ㅇㅈ 6
ㅋ
-
너무 외롭다 4
여자친구 사귀려면 어디에 가야하죠
-
역동적으로 한컷 더 17
영화배우같뇨?
-
능력의 문제다 3
내 그릇이 작은가보다 아무리 복기해도 성적을 올릴만한 그림이 안 그려진다
-
커뮤하는 사람들에 대한 편견있었는데 다들 평소에 아는 사람들 같아요
-
텔그 사볼까요? 5
실채점 나오고 수시 결과 나올 때까지 기다리다가 죽을 거 같은데 어차피 수시는 최저...
-
15,21,22,26,28,30틀림
-
글자 비슷한 공익으로 가면 되는거 아님?
-
조교 해보고싶네 2
Qna조교 시켜줘잉
-
내꺼 아직도 안본 사람 14
있을려나 재재재탕
-
또 ㅇㅈ임뇨 10
잘생겼뇨?
-
차피 친구가 거의 없어서 ㄱㅊ다고 아 ㅋㅋ
-
ㅇㅈ 1
을 안하는 이유 고삼 때 친구 중 한 명이 오르비하는 걸 봤다
-
진짜 작작 소리질러씨발
-
학생 표정 썪었던데 잘못한건가 어머님 분께 양보함
-
인강?현강 하나더?
-
으흐흐으흐흐
-
사설냄새 존나나노
캬 오르비 대표 고트 기하러 약연님이....
|f(-4)| = 49
|f(-1)| = 32
|f(5)| = 32
여기서 f(-4) f(-1) f(5) 모두 양수여야 답이 나옴
따라서 f(-4) + f(-1) + f(5) = 113
악마랑 거래하심? 모든 수능 수학 문제는 다 맞추시는 것 같네....