[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사 아직 후한거같아서 이거 두개 성사될지 모르겠는데 일단 비교해보면 어디가 더 나은가요?
-
https://m.hankookilbo.com/News/Read/A2024112112...
-
생윤은 하루에 3시간 해야되는데 물2 < 생윤 이라고 하면 욕먹겠지? 물2은...
-
학원 매일 정기적으로 조퇴할 수 있나요?
-
8시~4시 물2 4시~10시 지2 집가기 ㅋㅋㅋㅋㅋㅋㅋ
-
ㅎㅇ 0
ㅎㅇㅎㅇ
-
서로 손해볼거 없답니다 :)
-
힐링되노
-
2026학년도 수능 볼생각임 강윤구 들어보니깐 ㅈㄴ 좋은거같은데 전에 2024수능이...
-
오직 설의이기 때문
-
수학 공통 중 23이 젤 쉬웠음 (당연 현장임) 이유: 15,22 감각적 직관으로 딸깍딸깍함
-
탐구 변표 2
올해 탐구 어려웠는데 불변표 나올까요
-
문과 라인 4
사회문화 채점 잘못해서 45점이었네요..ㅎㅎㅎㅎ 겁나서 빠른 채점 안 돌리고...
-
이러면 모든 상황이 냅다 들어맞고 너무 이쁘다 그냥 이걸로 가자 약간 수학 다항함수...
-
연애하고 싶다 3
-
안녕하세요 재수해서 이번에 백분위기 74 94 2 95 96 나왔는데요…ㅠㅠ 국어...
-
어릴때 와이책 보고 외계인이 잡아갈것같아서 창문 두개 다 꼭 닫고 커튼치고...
-
아니아니 변표 9
정시에서 변표를 안 쓰고 통합 변표를 쓰면 과탐 가산점 없으면 사탐이 매우매우...
-
동생꺼라 한 번만 봐주세요 ㅠㅠ
-
걍 할게 없네 ㄹㅇ
-
개사기 같음 돈복사 버그 거의 유료주차장급인데 돈은 엄청벌음
-
개웃김ㅋㅋㅋ
-
고대 정시 내신 3
체육,통합사회,생1,고급수학 이런거 전부 다 포함임?
-
나 씹덕됨 0
바이 왤케 잘생김????
-
홈스쿨링 하다 올해 수능 짧게 준비해서 보고 내년 수능 제대로 준비해보랴 하는데...
-
서울대식 0
410.5에 내신 cc라.. 설공쓰기 쫄리네요 ㅜ 원래 그렇게 높은 과가 아닌데...
-
부평에 ㅌㅜㅇㅓㅂㅓㅅㅡ 여기 새로운 곳이던데.. 스카 분위기 나더라고 설명회...
-
센츄는 나랑 상관없는 얘긴 줄 알았는데 이게 되네 근데 10렙 못찍어서 광광 우럭따....
-
겨울만 되면 목이 간지러움… 목 안이라고 해야하나? 성대? 너무 간지러워서 입에 손...
-
어떻기 쓰느냐가 중요한거지
-
정석민 박광일 심찬우 국어를 국어로 바라보는 샘들임 이분들 열심히 듣다보면 자기가...
-
이거 이상한거 맞죠..? 뭔가 하나는 틀린 거 같은데 어떻게 해야되나요
-
가천대 의대 논술 이번주 일요일 맞는거죠? 토요일이라 그러는 분이 있어서
-
안녕하세요. CRUX 차수영입니다. 수능이 끝나고 잘 쉬고 계신지요. 오늘은 다소...
-
이맘 때 학과 고를 때 도움 되는 이야기일까 하여 적어봅니다. 인어문 학과 보시면...
-
어떡하지 다른 건 재미가 없어 여기서 시던잖은 수능 얘기하는게 젤 맘이 편해
-
물리/화학 백분위는 1,2 다 터져있는데 2는 그나마 깡표라도 좀 나아서 이득...
-
씨름 10년차 아마추어 100명 중 1등하기 씨름 1년차 윤성빈 이기기 난 전자가...
-
메가 합격예측 0
메가에서 현재 80프로정도 뜨면 실채점 뜨더라도 가능하다고 생각할 수 있나요..?...
-
원투는 +3점 투투는 +5점 가산점 주는데 이미 하던 생1 버리고 노베 화2 시작할...
-
ㅈㄱㄴ
-
저는 문학은 몰라도 비문학은 무조건 독학하면서 독해력 향상시키는게 실력 향상하는...
-
거긴 더 빡세지 않나 이미 의대 걸어놓은 애들이 바글바글 할텐데 응 망해도 의대야 하는 마인드
-
jpop 추천해주세요 27
유명하지 않은 것도 괜찮으니 추천 부탁드립니다..
-
근데 올해는 기출에 매진하면 잘볼수 있었다가 맞나요? 3
그냥 궁금하네요... 이번수능 잘보신분들의 의견은 어떠신가요?
-
인생 ㅠㅠ이
-
25만 질러서 원기베리 4셋 깠는데 까만펫? 자석펫 재료 8개가 나왔음 그거 다...
-
얼버기 6
오늘도힘차고좋은아침
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다