2023 수능 수학 손풀이 (공통, 확통, 미적)
2023 수능 수학 손풀이_울고있는치타.pdf
다들 스캔본은 별로라해서 패드를 샀습니다... 이거하려고...
5월 모의고사 갑자기 하면 글씨체 난리날 것 같아서 연습하려고 해봤어요!
패드에 글쓰는게 쉬운게 아니네요 ㅜㅜ 꿀팁 있으신가요
피드백 환영합니다! 저도 지금 다시 보는데 글씨가 많이 작은 것 같네요 ㅎㅎ;
공부에 도움되길 바라겠습니다!
5월 모의고사 손풀이 기다려주세영
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보좌진이 국회의 올라가는 계단에서 소화기 들고 저항중 0
오마이티비
-
오늘을 기대하며 1
나는 잔다
-
계엄령말고 더 있나
-
조정식피셜 떴다 8
미친건가 ← 1타인데도 노빠꾸내ㄷㄷ
-
님들 급함 3
증권계좌 만들어서 미장갈까 아니면 그냥 외환계좌 만들고 달러 몰빵칠까
-
국회, 긴급 본회의 개의
-
믿말왜글을안쓰지 1
근들갑떠는거 재밌긴했는데
-
서울의 봄 보고 계엄 조지기.
-
본회의 소집할 수 있는 거임? 그냥 빨리 소집해서 과반 이상으로 해제하려는 건가
-
lm우측이동 이자율하락 외화유출 환율상승 is우측이동islm둘다 우측이동으로...
-
ㅠㅠㅠ
-
의장: 선언이 되었으므로 대통령 보고사항은 회의록에 게재하도록 하겠습니다 0
이번 사태는 그누구도 예상하지 못했고 또 비상계엄 동의 어렵다 국회도 비상계엄...
-
저도 모르겠어요 오라고해서왔죠 ㅋㅋㅋㅋㅋㅋㅋㅋ 나무각목으로 국회유리창 뿌수는중 ㄹㅇ 이게맞음?
-
왜 이리 애매한 시간에 하지
-
회원에 의해 삭제된 글입니다.
-
뭐임
-
내일 특검의결이었네 그래도 이건ㅋㅋㅋ
-
개꿀잼 역대급 떡밥이 터져버렸잖아
-
내일 휴강인가요
-
ㅇㅅㅇ #~# 4
이모티콘 입니다
-
아 제발 휴일
-
라방으로 국회 담넘고 들어가는거 보여줌
-
국회 상황 1
수능끝난 고3교실같네 엄청 시끌시끌해
-
어케됨? 간첩으로 잡아감? 일단 친구들끼리는 윤석열 패드립 뒤지게 박고있긴한데
-
아직 300명 안모여서 아직은 ㄱㅇㄹ 효력있는건가요?
-
실시간 시위 장면 안봐도 비디오임 ㅇㅅㅇ 과연 12월안에 윤카 탄핵 ㄱㄴ할것인가 ㅋㅋ
-
속보
-
국사에 별로 관심이 없어서 계엄령 선포가 어떤건지 잘 몰랐는지 친구한테 얘기...
-
무효를 무효 이딴 소리하네 ㅋㅋ
-
한국사 교과서를 보다가 나온 구절이에요
-
[속보]계엄군, 국민의힘 정책위의장실 창문 뚫고 진입 1
4일 새벽 국회 상황.
-
190명 모아다가 총살시키나
-
정상적인 방법으로는 계엄해제가 되나?
-
???:아 군인은 퇴근이 없구나 ??:너는 왜 말을 그렇게 하냐
-
중계 1
시위중
-
계엄 선포 시 대통령은 이를 지체없이 국회에 통보하여야 한다. 2
정법 개념입니다~
-
'정우성'이 출현한 '서울의 봄'
-
소화기다 0
.
-
계엄령으로 ㄹㅇ 얻을게 뭐가 있지 이러다가 걍 삼일천하도 아니고 세시간 천하마냥...
-
교수님아 ㅠㅠ
-
다음을 기약할수 있을까 진짜 중요한 순간인데
-
일단 딸 한 번 치고 생각할까?
-
지난주에 왠지 빌려오고 싶었음뇨
-
https://www.youtube.com/watch?v=LJKfbLKmE0A흥미진진
-
충격적인 뉴스네 0
이태원 뉴스 봤을때 느꼈던 그 감정을 다시 느껴보는구나
-
150명 정족수는 채웠는데 지금 특전사가 유리 깨고 진입시도중
-
우원식 의장, 국회 본회의 개의
-
이게 가짜라는걸 모두에게 알립시다
태블릿 적응기라... 부족한게 많아요
날카로운 피드백 부탁드리옵니다...
도움되는 글 감사합니다
잘 보고 가요~ 이웃 신청합니다 ^^
흠 글씨 키워야할것같긴한데 다들 다운받아서 보지않나요..? 제가 태블릿으로 봐서 확대하면 커보이는건지 모르겠네요...
그건 그래염 여기서 보기엔 그러네염
도움되는 글 감사합니다
개추...
깔끔하시당
꺄 치타옵하 머시써요
오 미적 28번 저렇게 삼각형을 확장해볼 생각을 할 수도 있군요
전 현이 같다고 준 조건보고 저 확장이 먼저 떠올랐는데, 이 풀이는 뒤져봐도 찾기 힘들더군요 ㅎㅎ
현의 길이가 같다 -> 원주각이 같다 -> 원 위의 점 E를 떠올려 삼각형 CEQ를 떠올리자 -> ASA 합동
을 이용한 후 삼각형 EOD와 닮음임을 이용해 무한등비급수에서 닮음비로 넓이비 처리하듯 계산..! 어쩌면 이게 정말 출제자가 의도한 풀이일 수도 있겠네요!! 저는
'현이 주어짐 -> 원의 중심에서 현에 수직이등분선'과 '각을 많이 앎 -> sin법칙'으로 주어진 그림 내에서 해결하려던 생각이 첫 풀이였던 것 같네요
기트남어..
기트남어도 해죠오
기트남어...는 고민해보겠습니다
시간이 남으면 해볼게요..!!
14번 ㄷ 사고 과정은 어떻게 하셨어요?
전 현장에서 극한이 중첩되길래 뇌절 왔는데..
극한 중첩이라기보다는...
[-3,1]구간에서 증가하게되면 x=-3을 확인하고 최소를 갖는것을 확인할 수 있고
[-3,1]구간에서 감소하는 함수라면 1에서 최소를 가질텐데, x=1의 오른쪽 왼쪽 극한을 확인할 필요보다는,
*x=1에서 음수의 값을 갖지 않는 것만 확인해도 사실 최소가 없다는 것을 확인할 수 있습니다*
x=1에서 양수가 나오면 밑에 감소하는 함수에서는 x=1의 값이 존재하지 않으므로 최소가 없구나를 이것만으로도 확인할 수 있죠!
그래서 사실 그래프는 보여주기 위해서 그린거고, 극한 중첩도 필요없는 문제라고 할 수 있겠습니다...ㅎㅎ
아하...
이해되었습니다
너무 감사해요 ㅠㅠ
제 부족한 설명이 한번에 이해되셨다니 감사합니닷 ㅎㅎ