2023학년도 6월 22번 논리적 풀이
함수 g(x)가 실수 전체의 집합에서 연속이므로 x=0에서도 연속일 것입니다. f(x)도 연속함수이니 그럼 다음이 성립합니다.
이제 저 극한을 해석해줘야하는데 우선 (분모)->0일 때 t=-3, t=6일 때가 아니면 수렴하니 (분자)->0이어야 겠습니다. 그럼 g(-3)=0임을 알 수 있습니다. (근데 g(x) 정의된 것 보면 당연하긴 하죠)
이제 극한이 부정형이고 분자에 루트와 -가 있으니 유리화를 해봅시다.
한결 편한 형태가 되었네요. 이때 x->-3인 상황이므로 g(x)는 x<0의 형태를 가져와야합니다.
자 그럼 ㅣabㅣ=ㅣaㅣ*ㅣbㅣ임을 활용해주면
가 되겠습니다. ㅣx+3ㅣ을 편하게 생각하기 위해 이제 우극한, 좌극한 따로 생각해봅시다.
이때 (분모)->0인데 (분자)->0이 아니면 발산하니 f(-3)=0일 것입니다. (f(x)는 연속함수)
이때 f(x)가 최고차항의 계수가 1인 이차함수이니 다음과 같이 식을 작성할 수 있습니다.
그럼 이 형태를 다시 집어넣어 정리해주면
분모가 0이 아닐 때 다음으로 수렴할 것입니다.
또 좌극한도 마찬가지로 생각해주면
그럼 g(t)가 0이 아니면 극한이 수렴함을 알 수 있습니다.
이어서 극한이 존재하지 않는 상황은 g(t)=0인 상황과도 같음을 알 수 있습니다.
따라서 극한이 존재하지 않을 때의 t값이 -3과 6이라는 것은 다음을 의미합니다.
동시에 이외에는 방정식 g(x)=0의 근이 없음을 의미합니다.
g(-3)=0은 자명하고 우리가 얻은 것은 g(6)=0입니다. 그럼
이때 a는 양수이기에 f(6-b)=0임을 알 수 있습니다. 그럼 6-b=-3 or 6-b=k 이므로 b=9 or b=6-k 입니다.
그런데 만약 b=6-k라면 f(x-b)=f(x+k-6)=(x+k-3)(x-6).
이때 방정식 g(x)=0은 x<0에서 -3, k를 근으로 갖고 x>=0에서 3-k, 6을 근올 갖습니다.
-3과 3-k가 일치하거나 6과 k가 일치할 때는 k=6인 상황이므로 b=0이 되어 b>3 조건에 모순입니다.
k와 3-k가 일치할 때는 k=3/2인 상황이므로 방정식 g(x)=0이 x>=0에서 3/2를 근으로 가져 모순입니다.
k와 -3이 일치하고 3-k와 6이 일치할 때, k=-3일 때는 상황이 성립하며 b=9입니다.
따라서 b=9 확정입니다. (b=6-k일 때 가능한 조합이며, b=9일 때와 같은 상황이니)
그럼 다시 돌아와 f(x-b)=f(x-9)=(x-6)(x-k-9) 입니다.
이때 방정식 g(x)=0은 x<0에서 -3, k를 근으로 갖고 x>=0에서 6, k+9를 근으로 갖습니다.
-3과 k+9가 일치하거나 k와 6이 일치할 때는 각각 -12, 15라는 근이 생기므로 안되고
-3과 k가 일치하고 6과 k+9가 일치하는, 즉 k=-3일 때가 적절하겠습니다.
이제 f(x) 결정됩니다.
g(x) 연속 조건으로부터 처음 얻었던 정보에 b=9를 활용해주면
f(0)=9이고 f(-9)=36이므로 a=3/4가 될 것입니다.
이제 답 구해주면 끝입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현여기 고2인증 2
수능 좃망햇어요
-
언매 가르치듯 영어 가르치는 교과서는 왜 없음? 옛날에는 있었음?
-
29점 백분위 93은 대체 무슨일이 있었던 거지
-
배가빵빵해짐
-
XX법을 정확히 익힘.
-
완전 노베 모고보면 5-6등급 나옴인셉션 패키지 사서 듣고있음근데 주변 애들이 다...
-
수학 공부법 0
수능 집응시 기준 80점인 예비고3이고 실전개념중입니다. 정답률이 얼마정도 되면...
-
초기 형태의 사탐런까지는 오 그런 방법도 있네..! 이런 생각이었는데 요즘 가산점만...
-
이건 저도 예상못함 ㅋㅋㅋㅋㅋㅋ
-
고1 고2 ㅁㅌㅊ?
-
무물 0
오늘까지
-
현역 노베 물생 vs 생지 vs 생+사탐(사문) 중 뭐가 낫나요?? (인공지능,뇌과학 희망)
-
에휴
-
도표2개 개념1개 수능때틀렷는데 나름 도표장인이라고 생각했는데 수능 특유의 떨림과...
-
뉴비가 생겼다 3
파릇파릇한 현여기야
-
션티 수업 근데 1
토 세정반 학생인데 진짜 강의력 개좋으시네 쌤들 보통 템포가 넘 빨라서 놓치거나 넘...
-
진지하게 참고할게요
-
이제 고3되고 이과인데 이미 사탐런은 함 미적은 할라고 햤엇는데 모고나 수능...
-
영어 올리는 법 8
평가원 3인데 감으로 하는 것 같아서 실질적으론 4정도 되는 것 가같아요(듣기는...
-
5모 6모때 화1 35 33 받고 이건 사람이 할게 아니다 싶어서 한번도 공부안한...
-
물1 화1 사문 14
이번에 고3 되는 현역 07입니다 원래 화학을 하다가 모의수능보고 이건 아닌거 같다...
-
오타아닙니다 기 맞아요
-
야식 10
-
나는 작년에 수학 실모를 n회분 풀었다
-
저는 고삼시절 시험 칠 때마다 블로그에 기록했어요 기승전결로 깔끔하게 나눠서 다 정리했죠
-
80년대 동아대 1
80년대 동아대 위상이 현재의 명상가 위상보다 높았음?
-
내신 ㅇㅈ 7
강제로 정시의 길을 걷게 됨..
-
세계가 콜록콜록… 美 올겨울 독감 환자 530만명, 中·인도선 HMPV 급증 1
미국, 중국, 인도 등 해외에서는 여러 전염병이 동시에 유행하고 있다. 코로나,...
-
[공부법 특강] 정공법 총론 2. 국어, 어떻게 공부해야 하는가? 1
이 글을 쓰기에 앞서 기본적인 수능 국어에 대한 이야기를 해보려고 한다. 수능...
-
단과다니면 구할수잇나요?
-
수우미양가 중에서 가!
-
내신3.7 1
이 내신으로 전남대 가능하나요? 안되면 3학년때 몇까지 올려야하나요ㅠㅠ? 광주사람입니다ㅠㅠ
-
역대모고성적 6
고1 3모 152 ( 77 ?? 81) 고1 9모 232 (77 65 88) 고1...
-
이러면 나도 헬스터디 지원했지~ 삼반수생 메디컬보내기 프로젝트로
-
하아..
-
”한수.” 성대에 수의대를 만들면 “성수.”
-
확통런 LETS GO ㅋㅋㅋㅋ 아 기하하고 싶은데 크아아악 ㅜㅜㅜ
-
점수대 왤케 빡세냐 건수 가오 지리네
-
여자 참가자들 다 이쁜사람으로 뽑네 ㄹㅇ
-
지금 딱 진학사 원서직전등수랑 똑같은데서 점공 3일째 안들어오는데... 16명학과...
-
걍 과탐해야되나
-
강기원 복테 8
강기원 복테 2~4점 구간이면 수학 접어야하나요?? 존나 암울띠;;
-
가 접니다 ㅎ 올해부터 오르비클래스 국어 인강으로 복귀합니다 (지난 몇 년간은...
-
신기하다 1
-
하이 님들 8
인증하시는거들 보고 극한의 고능함을 느낌
-
내가 그렇게 버러지일줄은 몰랏어서
-
안녕하세요! 오르비에서 강의를 하게 된 김지형 강사입니다. 앞으로 강의를 열심히...
-
갈만한가요? 가고 싶긴 합니다
-
경고한다 먹지 말라면 먹지마
금테 책참 ㄷㄷ 멋져요!
감사합니다! 입시 커뮤니티에서 팔로워를 300명이나 모으다니... 수능 수학 말고 경제학을 좀 공부해야할텐데 ㅜㅜ 가까운 미래에 '내가 생각하는 경제학에 대하여' 같은 글로 돌아올 생각을 해야겠네요
오 멋지네요 기대하겠습니다!
감사합니다, 이상 님도 오늘 남은 2시간 가량과 내일 하루 파이팅입니다!
오류가 있네요. 문제의 극한식의 -3에서의 좌극한과 우극한 모두g(t)=\=0일 때, |k+3|/2|g(t)|입니다. 따라서 f(x)를 확정하기 위해선 b>3이라는 조건을 활용해야 합니다.
감사합니다, 수정했습니다. 중간에 ㅣx+3ㅣ 절댓값 푸는 과정에서 -를 한 번 빼먹었었네요. 풀이 쓰다보니 b>3 조건은 k 후보값 찾는 논리로 자연스레 쓰인 것 같은데 확인해주시면 감사드리겠습니다.
ebs 해설 확인해보고 왔는데 k를 b에 대해 표현하면 b>3 조건으로 x>=0에서 g(x)의 함숫값이 0이 될 때가 6으로 유일함을 보일 수 있군요!