[이동훈t] 3월 수학, 이동훈 기출 비교
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 수학 전 문항과
(단, 너무 쉬운 문제 제외)
2024 이동훈 기출을
비교해 보겠습니다.
기출이 어떻게 변형되어 출제되는지
꼭 익혀야 하는 수능 실전 개념은 무엇인지
반복되는 중요한 풀이에는 어떤 것들이 있는지
...
등등을 알아보겠습니다.
N수생 분들에게도 당연히 도움이 되겠지만
아직까지 기출에 대한 경험이 충분하지 않은
고3 분들에게 큰 도움이 되리라 생각합니다.
힐 위 고 ~!
<공통 (수학1+수학2) >
문제를 보자마자
이차함수의 정적분의 공식,
이차함수의 대칭성,
넓이의 분할과 합
이렇게 3가지가 떠오르지 않았다면
기출에 대한 연습이 부족한 것입니다.
아래는
2024 이동훈 기출 수학2에 수록된
이차함수의 정적분 공식에 대한
증명입니다.
이 문제를 보자마자
아래의 그림이 떠오르지 않는다면 ...
연습 부족입니다.
아래는 2024 이동훈 기출 수학2에
수록된 수능 실전 개념입니다.
19년에 출제된
교육청 기출의 순한맛 입니다.
이 문제에 대한 설명은 아래의 글로 대신합니다.
[이동훈t] A-B=(A+C)-(B+C) (+230311) 수학1
딱 보자마자 작년 9월 모평 문제가 떠올라야 합니다.
풀이법도 동일합니다.
합성함수의 방정식
이차함수의 대칭성
삼각함수의 실근의 합
이렇게 세 가지가 결합된 전형적인 문제입니다.
이 수준의 문제는
쎈 B 에서 충분히 찾을 수 있고요.
2024 이동훈 기출에서는
합성함수의 방정식에 대한 설명을
여러차례 해두었습니다.
ㄱ, ㄴ은 연속성, 미분가능성에 대한
교과서 적인 풀이를 적용하시면 되겠구요.
ㄷ에서는
이차함수의 정적분의 공식을
적용하면 계산을 단축할 수 있습니다.
아래는 2024 이동훈 기출 수학2의
예제 설명입니다.
딱 보자마자 작년 수능 15번을 떠올리게 되지요.
작년 수능 문제의 영혼 없는 버전이라고 보시면 됩니다.
표 또는 수형도를 그리면서 각 항에 올 수 있는
수를 판단하면 됩니다.
이건 특정한 이론이 필요하다기 보다는
경험적인 것이긴 한데요.
다만 증가와 감소를 반복한다는 점에서
주기함수 임을 알 수 있긴 합니다.
(이에 대해서는 6월 전에 따로
칼럼을 올려드릴 것입니다.)
이 문제는 아래의 글로 대신합니다.
[이동훈t] 평행이동을 해도 변하지 않는 성질 (+230320) 수학2
이 문제를 풀면
반복되는 항을 포함한 두 등식을 얻게 됩니다.
2번 이상 반복되는 항은 반드시 치환해야 하는데요.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
이 문제 보자마자 아래의 9모 문제가 떠올라야 합니다.
위의 문제에
절댓값이 붙은 4차함수의
미분가능성이 결합되었다고
보시면 됩니다.
아래는 이 주제에 대한 기출문제의
풀이입니다.
(2024 이동훈 기출 수학2 수록)
이런 풀이과정은 반드시
익혀두어야 하겠지요.
수능은
그때그때 생각나는대로
푸는 것이 절대 아닙니다.
< 확률과 통계 >
교과서 연습문제에도 있는 문제입니다.
위, 아래 똑같죠?
다른 공, 다른 주머니에 해당하는 문제입니다.
(이 주제도 꼼꼼하게 학습해두어야 합니다.)
그냥 뭐 ... 같습니다.
J040 기출에 원순열을 결합한 문제입니다.
새로운 유형이라기 보다는
새로운 결합에 해당합니다.
J030 처럼
(1) 수(대상)을 선택하고
(2) 이를 나열한다. 이때, 같은 것이 있는 순열의 수를 이용한다.
라는 관점에서 같습니다.
이와 유사한 문제들은 워낙 많습니다.
이 문제 역시 ...
새로운 유형이라기 보다는
새로운 결합입니다.
아래의 두 문제를 묶었다고 보면 되겠습니다.
+여사건 포함
그래서 풀다보면 ...
어디선가 써본 풀이 같고 ...
뭐 그렇습니다.
< 미적분 >
속도의 관점에서 an = 3^n 으로 두면 됩니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
역시 다항함수의 속도에 대한 문제입니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
치환에 대한 문제인데요.
사실 1을 모두 지우고, 근사적인 계산을 해도 좋습니다.
이에 대한 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
수열의 합과 차 (수학1) + 수열의 극한
이 물리적으로 결합된 문제입니다.
위의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
0<a<1, a>1 로 나누는 행동을
반드시 손에 익혀두어야 하는데요.
아래의 문제에서 이에 대한
연습을 하게 됩니다.
(2024 이동훈 기출 수학1 수록)
이 기출과 연관되어 볼 수도 있고 ...
사실 부등식 주고 자연수의 개수를 구하라는 문제는
워낙에 많으니까요. (특히 교사경에...)
수열의 극한값 구할 때에는
아래의 실전이론에 대한 이해가 반드시 필요합니다.
아래의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
이 문제는 사실상
도형의 확대, 축소에 대한
이해를 평가하고 있습니다.
아래의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
< 기하 >
이 문제를 읽자마자 아래의 문제가 떠올라야죠.
이 문제 보자마자 아래의 문제가 생각나야 합니다.
추가적인 설명은 아래의 글을 참고하세요.
[이동훈t] 한 각을 공유하는 두 삼각형 (+230330기하) 수학1 + 기하
위의 두 기출문제는
삼각형(사다리꼴 포함)에서의
닮음을 평가하고 있습니다.
이차곡선에서는
삼각형(사다리꼴 포함)에서의
닮음비를 자주 묻습니다.
이 문제는
이차함수의 정의와
한 꼭짓점을 공유하는 2개의 삼각형를
결합된 것인데요.
이에 대한 설명은 2024 이동훈 기출 수학1에서 해두었습니다.
쭉 읽어보신 분들은 아시겠지만 ...
올해 3월 학평 수학은
기출과 수능 실전 개념에서
절대 벗어나지 않습니다.
평가원 기출 3회독,
(+수능 실전 개념 포함)
교사경 기출 2회독
이면 6월에서
당연히 1등급을
쟁취할 수 있습니다.
하고 싶은 공부를 해서는 안됩니다.
해야 하는 공부를 하길 바랍니다.
오늘도 열공 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
킬캠 0
킬캠 이정도면 몇뜰까요? 최저때매 무조건 2이상은 받아야돼서.. 시즌2 미적기준 1...
-
얘가 대비로 낚은 걸로 유명한 문제인데 대비도 아니고 영혼의 심연 < 사실적이지도...
-
경제출제되면 0
경제러는 웃을것이다 하하하하 츄베릅
-
배달 문앞에 두고가라는데 굳이굳이 나오라는사람들은 뭐임? 13
진짜뭐임? 무섭게 저러는사람 가끔 있더라
-
강대 시즌제로로 넣으면 지원 컷만 맞추면 웬만하면 붙나여?? 본관이나 스투요...
-
스태틱 2
의 단검(sweet sword)
-
시험장에서 심한감기 컨디션 난조로 시험보길 저주한다. …그래도 망한다고는안했어
-
이감 6-10 0
어려워용…너무너무어려움… 어부사시사 ㅁㅊ겟네공부안햇더니 독서는 가나형이 젤 무난했던...
-
하... 시간 ㅈㄴ 없는데 둘중에 뭐가 더 나올거같음??? 6,9 둘다 현대...
-
독 2 문 4 언 1 진심 문학 개빡센데.. 이거 연계 많이하신분들은 난어도 어떠셨나요?
-
큰일났다! 3
옯끼야아악
-
고3때 있었던 일 16
롤드컵 T1이 우승하고 페이커가 MVP탐 트럼프가 미국 대통령 당선됨 한강 작가가...
-
소정아 0
지금 11월이야...
-
먼가 여자숏컷같은 낭자애느낌내고싶은데 남자는 어디까지 괜찮은지 모르겠음.. 저거는 작년 재작년 머리
-
국어 그읽그풀vs구조독해(김도훈T)...
-
.
-
pd수첩보니까 진짜 한숨밖에 안나온다 나는 탈출했는데 교대다니는 동기들 걱정이...
-
재수생인데 그냥 궁금해서 여쭤봅니다!!
-
침대보다 좋은 대는 없다고 생각해요
-
고2가 작수 수학 시간재고 풀어서 이정도면 내년 수능 수학을 하나 틀리거나 만점 받는거 ㄱㄴ한가요?
-
2019 미적분2 구해보고 싶은데 안보이네요 집에 2018버전만 있음 ㅋㅋ
-
혹시 이정도면 하트시나 솔지 환연에서 수요있을얼굴임? 1
님들 님들이 보기에 혹시 이런 외모는 (하트시그널이나 환승연애 솔로지옥) 여긴...
-
마지막 수능이라고 생각하니 10일 전부터 계속 불안하고 손에 안 잡힘..
-
매일 아침 카페인이 들어가야 머리가 돌아가서 당일에도 카페인 음료 들고가고싶은데.....
-
머리짜름 0
ㄷ 나 자신 진짜 언제 정신 차릴래
-
분노의파이팅 시발진짜누가이기나보자수능아 실전에서진짜개패준다
-
창가쪽 맨앞이 1번임 문쪽 맨앞이 1번임? 창문쪽 교탁 교실 앞문
-
션티T 티셔츠;;
-
수능 4일 머지다뇨 21
이제봤네 ㅎㄷㄷ..님들 안쫄림?
-
올리신 분 계신가요? 물리 필기노트 같은게 없어서...
-
근데 이감 후반부회차 갈수록 언어 어려워지는거 맞나요 0
뒤 회차 갈수록 미친듯이틀림……..
-
팔로우 하지마 미친놈들아 나 앞으로도 똥글만 쌀거야
-
ㅇ
-
수능이었어도 화작1컷 88뜰 시험인가요?? 연계공부를 안해서그런지 문학이 너무 빡빡하던데요…
-
아오 진짜 실모 대신 시간 맞춰서 기출푸는게 나으려나 3
물론 내가 못하는게 맞지만 묘하게 억까당하는 기분인걸
-
무섭다
-
근데 요즘 애들 문해력 낮아졌다면서 국어 수준이거 뭐냐 1
난이도랑 등급컷 왜이럼? 부풀리기 뉴스였냐고ㅋㅋㅋ
-
현실에서 저렇게 죽는다고 생각하면 많이 억울할 듯
-
얼버버버버기 0
불꽃모고 4회 적중예감 13회 국어 연계공부 사탐개념ㅂㅗㄱ습 을 공부할거임
-
사회지문 출제각인가...
-
상상 이감 1
이감은 항상 안정1컷인데 상상 시즌5 80점대 개꼬라박아요 어캄..? 이거ㅈ된건가요...
-
34번 5번 선지 응칠의 제안에 응오가 거부의 뜻을 보인 것은 성실한 농군으로 살기...
-
83점 밤새고 봤더니 처음으로 시간도 부족하고 정신없네 문학만 5개 틀리고 독서랑...
-
기울기 지점 1:2 안 쓰면 나가죽으란 심보로 보이는데 깡계산으로 푼 쌉실수들 계심?
-
Goat..
-
글 갈갈이 완료 1
다시 80개 미만으로 꾸준글까지 갈아버리면 3페이지 나오겠네
-
텍스트를 매개로 세상을 바라본다? 이런 말 하셨는데 정확하게 뭐라 말하셨는지 아시는 분 있나요??
-
올해 더프는 난이도 상관없이 80점을 넘겨본적이 없네 ㅅㅂ 상성이 안맞는듯
첫번째 댓글의 주인공이 되어보세요.