[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9모 생1 1컷 1
45임? 아님 46임??
-
문학 오늘 다조진다 수특 수완
-
평가원도 비슷하게 나오시나요?
-
악마와 거래 9
간절한 마음을 갖고 전념하는 당신, 달조차 구름에 가려져 광휘를 잃고 어둠이 세계의...
-
개인이 타인과의 상호작용을 통해 일탈자가 되어 가는 과정에 주목하는 건 낙인이론...
-
천일문.워드마스티시리즈 조정식(월간지.기출.실모.69평분석) 1등급 받는데 부족하나요?
-
h’(x)=g(x)-2x 인 이유가 뭔가요
-
이훈식t커리_개념.기출+솔텍1.2+파텍 n제_솔텍1.2 엄영대t.폴라리스.오리온...
-
수험생도 아니고 대학도 쉬고 있고 딱히 알바나 취업도 안붙어서 뻘글쓰시는분....
-
첫번째 사진상 ㄷ선지의 해설은 생태중심주의만의 입장으로 나오는데 두번째 사진상 ㄴ...
-
메이플스토리 밈의 스타일을 유지하면서 수능 관련 내용으로 개사해보면, 준비 과정과...
-
에서 들러의 원형은?
-
사람들 많이 쓰네..
-
아니 독서실에서 실모는 왜 찢어던지는걸까요,,,, 13
한숨이랑 샷건은 이해하겠는데 진짜 아무소리도 안들리는 조용한곳에서 팍팍 찢고 던지는이유가,,,,
-
믿기지가 않는다
-
버스가 방구뀐다 13
뿌앙
-
2010년도 이전 기출을 꼭 풀어야 하나요??? 문제 거르려는게아아니라 진짜 뭐지...
-
한숨 크게쉬시고 자꾸 지우개로 샷건치심,,,,,,그리고 잘 안되시는지 울먹거리시네요,,,
-
[속보]합참 “북, 경의선 폭파도로에 대전차구 조성” 11
합참 “북, 경의선 폭파도로에 대전차구 조성”
-
05모여라 16
나는혼자가되기싫다, 서러워서못살겠다
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
오늘도 잘생겼군 2
출격
-
문학 보기만큼 0
국어 방법론에서 많이 갈리는 논쟁도 없을듯
-
독서 풀이 순서 1
1.독서론ㅡ첫번째 지문ㅡ가나ㅡ과학 기술 2.독서론ㅡ첫번째 지문ㅡ과학 기술ㅡ가나 님들...
-
탐구 3.. 하.. 탐구 3이 더 쉬울까요.. 기출 풀면 다맞는데 사설은 맨날...
-
gkrdbjs dkfqk rkdiwl
-
전 솔직히 하루당 2만5000원 꼴인데 ㅈㄴ비싼데 딱히 해주는것없다고 느껴서 아까움
-
나의 무의식 0
-5+루트5^+12^ =-5루트25+12 =1 어? ㅅㅂ 아하 -5+루트+169네...
-
어디서 나온건지 잘 알겠는데 문제가 안풀림ㅋㅋㅋ
-
수1 질문 2
유리수 지수로 표현을 n홀수일때 음수일때 왜 불가능하나요
-
올해 현대시 중요작가중에 2분이 바로 김수영,김춘수 입니다. LEET연계...
-
정줄 놓고 풀었더니 81ㅠㅠㅠㅠㅠㅠ 진짜 에반데
-
빨리 배터리를 바꾸던가 해야지 무슨 저전력모드는 싫어.
-
더데유데 시즌2 0
빈칸 의문사 뭐지 진짜…. 영어 감 떨어졌나ㅠ 겨우 2등급 나왔네
-
모기 왜케 많지
-
내년 수능 응시예정인데, 시발점 대수,미적분 들어도 관계 없겠죠? 0
현우진T 조교님들은 되려 대수랑 미적분을 들어라고 하시는데 들어도 크게 상관없겠죠?
-
느려도 돼 1
마음을 둘 곳도 없고 더 갈 곳도 없는 슬픈 거북이 한 마리 상처가 많아 너 혼자서...
-
있으신분 ㅠㅠㅠ 답지를 집에서 잃어버렸어요
-
28번 푼사람 있음?? t랑 넓이값 계산할때 x축과의 교점값이 서로 관련이 있어서...
-
파이널디렉션 끝내기vs빌드업 문제 풀면서 회독
-
매년 찝찝한게 극갈래인데 올해는 더 신경이 쓰이는 갈래이기도 합니다. 극갈래...
-
11덮 국어 90 수학 92 영어 93 사문이랑 생윤은 말아먹음(사문은 9월쯤에...
-
오른발 3개 왼발 1개 아파요 흑흑
-
수학안풀리네 7
오랜만에 100분 꽉채웟다.. 내가싫어하는 유형만 짬뽕이엇서...
-
나이스 6
-
국수영 생윤 사문 100/80/1/44/44 생윤사문 실모 풀땐 50 잘 나오는데...
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^