포몬데 포카 어디에도 해설이 없는 문제
혹시 정말로 이거 풀이 좀 알려주실 분 없나요? 포만한 카페에도 없고 해설강의도 다 내렸고 미치겠네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘은 고고학...? 고고학도 역사과 겹치는 부분이 꽤 많으니... 흔히 구석기...
원점에서 무슨일이 일어나고 있는거 같은데 해결이 잘안되네요
문제 출처랑 답좀 알려주실수있나요?
답 35 출처는 포카칩 수능직전 모의고사 입니다
아마 원그리면 ㄷ진다사건,.저격문제 같습니다.
수직되는 부분에서 뭔일 있을거 같은데
2014학년도 수능직전 포카칩 모의고사 답은 35입니다.
g(t)= 절대값 √t²+f(t)²-r 이고 원을 t가 음수인부분부터 그려보시면 절대값안의 값이 양수->0->음수->-r
->음수->0->양수 로 바뀜
일단 f(t)=√t²+f(t)-r 이라고 하고 이 그래프를 그린뒤 음수인부분은 뒤집어 엎으면 됨 ... 그리고 f(t)를 미분해서 f'(t)를 구하면 골때리는게 t가 양수인부분과 음수인부분으로 또 나눠짐
t가 양수인부분을 먼저 살펴보기로하면 음양부호결정하는 분자식이 2t²-3at+a²+1이고 이 식이 두근을
가지냐 한근을 가지냐 근이없냐 를 또 구분해야함 ...우리는 언제나 그랬듯이 한근을 가지는 경우 먼저 살펴봄 ...이때에도 위의 분자식에서 근과계수의 관계를 따져보면 한근이 양수임을 알수있음
t가 양수인 부분에서 f(t)를 대략적으로 그려보면 계속 증가하는 그래프임.... 맨 처음처럼 절대값안의 부호를 고려해보면 t가 0~s(f(t)의 근)에서는 음수이므로 위로뒤집고 s~ 에서는 양수이므로 그대로....
t가 음수인부분에서의 f'(t)는 t가 양수인부분에 음수만붙인거... 따라서 t가 음수인부분에서의 f(t)는
감소하는 그래프 .... 맨처음처럼 절대값안의 부호를 고려해보면 t가 ~ p(f(t)의 근)에서는 양수이므로
그대로 p~0에서는 음수이므로 위로 뒤집고
종합해보면 미분불가능 용의점이 3개가 나옴 t= p,0,s 근데 2개이므로 선량한 점이 한개 있음
바로 t=s 이부분에서 f'(t)=0 다른 두지점은 기울기가 0일수 없음....
f'(t)=0이므로 위에서의 음양부호를 알려준 분자식 t²-3at+a²+1의 판별식이 0 따라서 a의 값은 루트8
그리고 s= 2분의3 곱하기 루트2
f(t)=0이므로 s와 a를 대입하면 r=루트4분의27
왜 s부분에서는 0일수있죠? 제가거기서 막혀서 아무리해도 불가능점 세개나와서ㅠ
t가양수인부분에서 f'(t)는 0보다같거나 항상 양수
t가 음수인부분에서는 항상 음수
용의지점 3개중 기울기가 0이려면 양수인부분밖에 없음....
어 저기 절대 근이 3개가 나오지 않는데 얘 근 2개 밖에 안 나와요 컴퓨터로 그래프를 그리고 별짓을 다해도 근이 2개 밖에 안 나옵니다
근은 2개인데 저위에 써놓은 3점은 극점들임...
극점에서의 기울기가 0이냐 아니냐를 따지면되는거...
아 와 개어렵네요 해결했습니다 오르비 짱짱맨