기하이를 위한 꿀팁 (벡터 6평 30번)
고생이 많은 Geohaee 들.
이번 6평 30번과 관련한 꿀팁
세가지 간단히 알려드릴게요.
1. 정육각형에서는 보조선 활용
정삼/사/육각형 같은 도형은
보조선을 그려서 특수한 점을
미리 찍어놓으면 도움이 됩니다.
2. 벡터 해석이 어렵다면 일단 위치벡터로
벡터에 대한 다른 해석도 가능하지만
위치벡터로 바꾸고 정리하면
방정식 풀 듯이 구할 수 있어요.
3. 성분에 대해서 제대로 이해하자.
벡터의 성분은 단순히 좌표가 아니라,
서로 평행하지 않은 벡터로 분해하는 것이거든요.
이번 30번 문제에서 d벡터와 a벡터는
각각 e1벡터, e2벡터 같은 역할을 하고 있습니다.
위치벡터였던 식이
갑자기 성분으로 변하는 마법의 순간!!
신기하죠?
기하러 힘내시고.
칼럼 원하는 기하 문제가 있다면
요청 주세요~
30번 해설강의 풀버전은 아래에 있습니다.
벡터 관련해서는 강의가 필요한 학생은
<스킬 - 벡터를 다루는 다섯가지 관점>
잘 정리한 수업이 있으니 문의주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10초에 글 1개씩 지워도 하루동안 글을 다 못 지움 13
어이가 없네 그냥 ㅋㅋㅋㅋ
-
리리 같은 똥캐로는 이길 수 없어 ㅠㅠㅠㅠ
-
how
-
꽤 열심히 했는데 아니 3일치도 못지웠다고 아직.. 똥글을 얼마나 싸댄거뇨
-
바둑도 수읽기 싸움 들어가면 재밌는데 포석은 재미없고 체스도 한번 시작해볼까?...
-
넘 좋당
-
잠자기
-
부산은 막 추천이 쏟아졌는데 대전은 성심당 성심당 성심당 일거 같아 뭔가 좀 두렵군요 ㅋㅋㅋ
-
언미물화 질문 받습니다 10
언미물화 질문 받습니다
-
박기호쌤 논술 0
박기호쌤 논술수업 현강 들을까여 아님 대치 다른학원 다닐까여 로고스같은
-
일신우일신 과목 별 기본적인 개념에 대한 이해와 적용을 중점적으 로 서술한...
-
시간 ㅈㄴ 빠르노
-
세번째 자리 0이면 딸피 맞는거 같기도
-
05가 애기취급받던때가있었는데...
-
내 인생의 절반을 줄테니까, 네 인생의 절반을 줘!
-
이유:내가 04라서 03부터는 나도 몰루
-
옛날엔 안 그랬는데 13
요즘 격겜 / 리겜 류가 좋아짐 틀 되어가는 중
-
재밌습니다
-
잔다..
-
리리 니나 샤오유 내 모스트 픽들 예쁘고 쉽?고 재밌음
-
이번에 2
사문 어려웠었어요 ??
-
나만운없네 8
딩선족다쳐내
-
왜 봉선동으로 안옴ㅠㅠ
-
근데 먼가 오랫동안 따뜻한 물에 들어가 있고 싶기도 하고..
-
더 들을거 추천해주세요
-
과제는역시 8
내일하는것
-
오늘의 야식은 5
짜파게티랑 김치 음료수는 콜라
-
철권이나 해야지 14
캐릭 추천 ㄱㄱ
-
기출이랑 사설만 푸는 무료한 수험생활에 그나마 재밌는 지문+머리쓰는 기분 나서...
-
백분위로 89 93 3 98 98인데 진학사에서 중대 경영이 3칸이 뜨던데.......
-
왜 아직도 2021 새해를 비는겁니까
-
1교시부터 7교시까지 반이 시끄러워서 수학만 하고있는 07정시파이터입니다.....
-
1학기 복학하고 2
2학기 반수로 볼까 ....
-
텔스 중경외시권 0
지금 얼마나믿어도됨? 99ㅇㅈㄹ나는데
-
사회문화현상이랑 자연현상 구별이 잘 안되는데 어떡함
-
ㅈㄱㄴ
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 12
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 6
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
미적,확통은 미적이 확통이인데 기하도 기하이로 부르는게 좋지 않을까요??
좋은 의견 반영하여 제목을 바꿔보았음
이번 30번 두번째 조건처럼
백터여러개에 오른쪽 하나일때 이번처럼 실수배조건이용할때도있고 어느때는 오른쪽 백터 분해해서 왼쪽이항해서 내분점 관점으로보던데 ... 차이를잘모르겠어요
식이 주어졌을때 해석하는 방법이 여러 가지인 것처럼 벡터를 해석하는 관점도 여러가지인거에요. 어떨때는 내분점을 이용하는게 쉽게 풀리기도 하는 것이죠. 근데 그게 문제마다 달라서요. 저는 5가지 관점으로 나눠서 연습을 하도록 하는데, 그중에서 마지막 관점이 위치벡터이고, 위치벡터를 이해하면 어떤 상황이더라도 식 정리를 해버릴 수 있어요.
감사합니다 그리고 질문하나만 더하자면 수학풀면서 태도를 만들어야하나요??
예를들어 삼각활용에서 원나오면
닮음,할선정리,더해서 180도,원주각 등등 이런걸 생각해야한다>>이런식으로요..
이번 수학 80점맞았고 여태그냥 생각없이 문제풀기만했습니다
음 그걸 태도라고 하는게 적절한지는 모르겠어요. 원과 삼각형과 관련된 교과서 개념을 모두 알고 있고, 시험에서는 그 중에서 하나를 연결시켜야 하고, 우선순위를 정해둔다, 라고 생각하는게 맞지 않을까요? 우선순위라는건, 할선정리같은건 외워도 되지만 증명을 해보면 삼각형 닮음이기 때문에 따로 외우는것보다 닮음이 더 중요하다 라는 생각을 하는게 좋을거애요.
기하는 풀이 방법이 미적분 계열 보다 훨씬 많기 때문에 유연하게 사고해야 해요. 그래서 어렵습니다.
선생님말씀은 문제마다 우선순위를 만들어야한다는거죠?? 저처럼 아무생각없이 그냥 푸는거보다???
아무 생각없이 푸는것보다는 원칙이 있는게 아무래도 좋겠죠? 문제마다는 아니고, 단원별로 또는 주제별로가 맞겠네요.
6평 기하 28번 여러 해설강의를 들어보았는데 와닿는 것이 없습니다 ㅠㅠ
28번도 올려봐야겠네요. 근데 기하는 보는 사람이 너무 적긴 하네요 ㅋㅋ 다른 해설강의는 어떤 부분이 와닿지 않았을까요?
'주축의 길이가 최대'라는 표현이 y=2x-3이 쌍곡선의 접선임을 확신할만한, 시험장에서 떠올릴 수 있는 합리적인 근거를 제시하는 해설이 없었습니다.
그렇군요. 해설강의 올리면 제가 완벽하게 이해시켜드릴 수 있을것 같은데요. 그 전에 간단히 설명드릴게요. 텍스트로만 이해가 될지는 모르겠네요.
일단 이 그림에 의해서 쌍곡선이 만들어진다는 것부터 이해하셔야 합니다.
그다음으로는 한 직선과 점이 있을때, 점으로부터 최단거리에 있는 직선위의 점을 찾기 위해서는, 점을 중심으로 하는 원(동심원)을 슉슉 그려가면서 처음으로 만나는 순간, 즉 접하는 순간을 찾는다. 이것과 정확히 같은 원리입니다.
감사합니다 아직은 알랑말랑한 그런느낌이에요 ㅠㅠ 그래도 자랑 컴퍼스까지 꺼내서 두뇌 풀가동 중입니다 ㅋㅋ
힘내라 기하이 :)
기하러 파이팅..!