[칼럼] e와 π의 초월성
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이런 경우는 왜 공개를 안 하는 건가요? 경희대 기균 농어촌중 한 전형인데...
-
ㅅㅂ 갑자기 또 후회가 되네.......
-
애매하게 어그로끌고 어중간하게 이것저것 하는 앤 비호감임 그래서 나도 대놓고 어그로만끌려고.
-
최저러인데 9모 이후에 사문으로 사탐런해서 10모 3등급 떴습니다 근데 제가 대성...
-
요즘 ㅇㅈ 16
메타 안돌리나 흠
-
최근에 누가 그랬는데 16
운영자한테 메일로 간곡히 부탁하면 재르비 1년제한 풀어준다고 하던데 혹시 도망자의...
-
70퍼만 맞으면 맞다고 하고 넘기기 눈으로 확인 안되는 근거를 가진 선지가 있음...
-
서울에 한파주의보가 내려지면 「서울시립대」 이제 잘게 진짜로
-
오르비 가입하면 됨
-
소중히 쓰십쇼 그거 다시 주몀 안되냐 그 한 50일전으로만 돌려줘봐 이번이...
-
옯부이 고향 사진 16
좋았지...
-
에피 실패 ㅜㅜ 2
틀린문제가 다 실수여서 너무 아깝네요
-
모두 수능 잘봐서 성균관대는 거들떠도 안보길 바랍니다 7
학교자체가 스트레스덩어리임
-
분량은 다른거의 4~8배인데 연계체감은 될지도 모르겠고 그시간에 다른 작품 더...
-
잘 안보여... 어떻하지...
-
야식 인증 3
쑥절미
-
. 3
자러가야지
-
메가 대성 누구잇음?
-
저는요..꿈이 있었어요..
-
서술자 시선이랑 인물 시선 초점화랑 구분 어케 하라는 건데 강사들 qna에 물어봐도...
-
대치 러셀 윈터 가서 수학 들으려고 하는데요 고2 10월 기준 높은 3이고 학교...
-
논리학+기술 고전소설 JOAT 간신히 80점으로 방어했는데 에혀...
-
10모 ㅇㅈ 3
가채점에선 수학 81이었는데... 과탐은 n수들이 문제인 줄 알았는데 현역들도 엄청...
-
신청한지 이틀 정도 지난 것 같은데 눈치...
-
22살에 설대 지휘과 졸업하고 군악 장교로 3년간 복무하면 4000은 모일거 같은데...
-
강민철 수강신청 0
이번에 대치러셀 윈터 가는데 강민철쌤 현강 듣고 싶거든요ㅠㅠ 러셀 수강신청 따로...
-
올해는 아직 모르니까 올해말고 작년에도 이감으로 실모 대비하셨던 분들 수능때 국어가...
-
[산허구리] 수능 전에 꼭 풀어보고 가세요 현대소설 공부하면서 얻어갈게 많은...
-
꼭 봐야할까...ㅜ
-
건조한안주먹으면 속안좋음
-
무죄판결임에도 불구하고 피고인이 상소할 수 있는 경우가 존재한다고 보심?
-
50+30+10+10=100
-
1회 공통3 미적1 84... 공통에서 계산실수로 틀린게 넘 아쉽다. 미적이 쉬워서 좋았다.
-
3수 할까.. 3
단기간에 성적 올리는게 진짜 쉽진 않네요 일지 매일 쓰는거도 너무 힘들어서 그만두고...
-
앙 7
하
-
여러분들의 불수능 기원에 따라, 올해 수능 국어 제제를 각각 실업률과 물가상승률,...
-
한번밖에 안쓴건데
-
ㅈ같은 고등학교에서 벗어나고 싶음 그냥 고등학교라는 교육기관이 싫음
-
와 목요일이네 1
딱 14일
-
집가자
-
화남 오르비 늘려야겠다
-
9,14,15,20,22,30틀... 9:부등호 분명히 이상 이하로 잘 설정...
-
진짜 학살당했네 성적 수치심 느낀다 ㅅㅂ
-
10회 다 풀진 못할거같ㅇ
-
50 47 50 48으로 마무리... 빡빡하누
-
대학시절부터 생긴 안 좋은 습관 수업을 못들음
-
부엉이 라이브러리 폭파시키면 전과목 1컷 얼마나 낮아짐?
-
합격찹쌀떡 피날레 모의고사(한대산 T)...
-
진짜 배탈 씨게옴...하 ㅠㅠㅠㅠ
-
다른학교는 많이 본 거 같은데 서울대 문과는 한 번도 못 봐봄 있나요??
7ㅐ추
고등학교에서는 왜 저런 조합 노테이션을 안 쓰는 걸까요?
5252 어디까지 적을 늘리려고 그래
수능공부하는사람이 이걸 정독하면 도움이될까요? 훑어봤는데 이해하려면 한 한시간은 써야될거같아서
수능과는 아무 관련 없습니다. 차라리 위상자 칼럼을 정독하세요.
평소에 초월수는 대표적인 문자로 나타나는 pi, e 정도가 전부라 생각했는데 아닌 것도 꽤 있더라구요. 그리고 e*pi와 e+pi 둘 중 하나는 무조건 초월수라는 얘기도 신기했구요.
초월성이 뭐임
그 어떤 유리계수(정계수) 다항방정식의 해도 될 수 없는 복소수입니다. e를 영점으로 가지는 정계수 다항식은 못 만든다는겁니다.
정계수 대수방정식…으
너무 반가운 증명인데요..!
옛날에 중학교 때 파이가 왜 무리수이고 초월수인지 여쭤보았을 때,
담임 선생님이 과학고에 재직중이셨던 선생님께 요청해서 저 테일러급수를 통한 오일러 공식 증명이랑 린데만-바이어슈트라우스 정리랑 해서
총 8쪽 정도 되는 A4용지에 인쇄해서 주셨었거든요.
당시에 미적분을 몰라서 (심지어 책이 영어였어요!!) 읽다가 결국 '그래서 e^pi_i가 -1이라는 대수적 수가 나오기 때문에 pi가 초월수가 아니면 모순이라는 거지?' 라고 결론짓고 끝냈었어요...
그런데 이렇게 숨어있는 강호의 고수분들한테 이런 내용을, 심지어 한글로, 배울 수 있다니...
참 ... 이런 말 하면 늙은이같지만 세상이 참 좋아졌고, 점점 더 좋아지는 것 같아요!
어려워요