극한문제 질문투척 ㅠㅠ
함수 y=2x^2의 그래프위의점 p(t,2t^2)에대하여 점p를지나고 직선op와 수직인직선이 y축과만나는점의 y좌표를 f(t)라하자. 점P가 y=2x^2의 그래프를따라 원점에 한없이가까워질때
f(t)의값은 어떤값에한없이가까워지는가?.
이문제에서요 점p가 원점이랑 거의 동일해지면 원점과p를지나는선 그리고 op와수직인선이 거의 x축과y축이랑 비슷해져서 사실상 f(t)의값은 무한대가되지않나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
패스가 있어서 그냥 단어만 외울까 하다가 들어볼려는데 독해강좌 하나 듣는다면...
-
유형부터 확실하게 하고가려고 하는데 쏀 틀리는게 없을때까지 반복해야하는건가요?
-
고속 언매 67+17, 미적 74+18 표점 얼마줌? 1
새로 업뎃된 버전으로 제발... 궁금해 미치겠다
-
이거 실채점되면 많이 떨어질려나요? 어떤 변수가 있을지 감이 안잡혀서...ㅠㅠ
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
수능치느라 고생하셨고, 남은 입시도 파이팅하세여
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 저래놓고 재수때까지 물리 안 버린 게 레전드 저때...
-
1. 지방의대생이 인서울 나올 성적되면 무조건 인서울 쓸것임 2. 애매하게 나왔어도...
-
하
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대 새학기 수강신청 A to Z [심화편]] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
아가 기상 7
피곤해
-
텔그, 고속, 대학교에서 공개하는 입결 컷 중 어떤걸 봐야 정확하나요?? 그리고...
-
수리논술이 슬슬 끝나가는 이 시기 저는 갑작스럽게 세상의 쓴맛을 보게되었습니다...
-
근데 등급컷 올려놓고 원서 못 쓰는 반수생이 얼마나될까 8
진지한 궁금증
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대학교 밥집리스트] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
분명 수능 끝나면 책도 많이 읽고 운동도 하려 했는데 6
걍 다 귀찮다
-
성균관대 합격생을 위한 노크선배 꿀팁 [대계열제 신입생 수강신청 꿀팁] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
이럴 때 닫는 괄호는 그냥 다음 줄로 넘기면 되나요? 그리고 마침표 찍고 큰따옴표...
-
근데 이대는 좀 멀음
-
사실 백분위에 5
+1씩 해도 되지않을까 내 위에 있는 메디컬 반수생들 중에 복학할사람들이...
-
락스 2
벌컥 벌컥...ㅆㅂ
-
어이가 없네 ㅋㅋㅋ 사건의 전말:...
-
올해 수능 본 현역이고 고2 모의수능 봤을 때(수능공부 거의x)는 국수영화생1...
-
건국대 합격생을 위한 노크선배 꿀팁 [신입생 행사 시 올바른 참여 방법, 새내기로서의 자세] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
문과고 2-2 기말까지 총 내신 4.0x 나옴 모고는 그냥 노베라 ㅠㅠ...
-
영면에 들고 싶구나 11
잠을 너무 조금 잔듯
-
항상 최악의 풀이로 풀고 있는다는 생각 땜에 괴로움..... 쌤 풀이는 딸깍하면...
-
가천대 합격생을 위한 노크선배 꿀팁 [신입생들에게 무조건 필요한 주거 꿀팁] 2
대학커뮤니티 노크에서 선발한 가천대 선배가 오르비에 있는 예비가천대학생들을 돕기...
-
이제 일어났다
-
엄 4
이번에 한과목 절은 주위 의대사람들 그냥 의대 합격증 받겠다고 쓴다는데 뭐노 진짜 정시의대 ㅈ되겠노
-
gs 누백 질문 0
24년도 시립대 경영 gs 70% 컷 자연계 기준 9.8 인문계 기준 2.2 인데...
-
국어 이승모 수학 이정환 영어 이명학 탐구는 아직 안 정했대
-
큐브 3
질문 올리는 애들 어떻게 하나같이 뒤지게 못하는거임?
-
고기가 아니라 내 살을 2번이나 깨물어서 지금 빵꾸나서 넘 아픔 ㅠㅠ
-
중앙의 경북의 경북치
-
골라줘오 ㅠ
-
최적쌤 조교 0
이번 수능 44점인데 불합이겟죠?..ㅜㅠ 너무하고싶은데
-
쿧쿧
-
수학 거의 노베이스인 군수생입니다. 평일 수학에 2시간+@, 주말 최대 5시간 투자...
-
그림 평가좀 12
자화상임
-
3~6개월 시간 협의 된다길래 방학 시즌이라 2월까지 할려고 동네 학원 보조...
-
탐구 변환표준점수는 임의로 부여하나요? 공식이 있나요? 0
과탐과 탐구를 별개로 하든, 공통으로 묶든 탐구과목의 변환표준점수는학교마다 살짝...
-
휴게소들릴건데아침메뉴추천촘
-
중앙의논술 2
출결보는거 맞죠? 무단결석이 수십개인데 gg치는게 맞겠죠?
-
(공군 군수) 포대갈 수 있는 특기 추천 좀 해주세요. 3
공군 군수해야할 거 같은데 포대 갈 수 있는 괜찮은 특기 뭐있나요? 비행단은...
-
이거 꿈이 점지해준대로 가야하나
-
지1 문항출제 0
지1 문힝출제할때 그림 편집 프로그램 어떤 거 쓰시는지 알려주실 분 있으실까요 ㅜㅜ
-
1. 회로날먹 2. 물1 평가원 47-50 고정 이게 컸음 물리는 ㄹㅇ 연관성이 큰 과목이라
-
연대 고대 한양대 가능한가요? 한양대는 높공 가능?
1/4나오는데요 op와 수직인선의 기울기가 거의 -무한대가 되는듯
1/2아닌가요???
F(t)=2t^2+1/4같은데
그렇게 어림짐작하지 말고 직접 f(t)를 구하세요.
어림짐작이아니라 이유가궁금해서요.. 제생각엔 무한대같은데 왜 값을갖게되는지..
OP와 수직인 선이 기울기가 계속 커지는 건 맞는데, P의 x좌표와 y좌표 또한 감소하고 있습니다. 그래서 f(t)가 발산한다고 단정하기엔 좀 그렇죠..;; 만약 t=0이 되었다고 했을 때 op와 수직인 선이 y축에 근접한다고 생각하면 y축 위의 모든 점이 그 선과 만나겠죠.
이 링크는 t=0.0001일 때 OP와 수직인 선을 나타내는 것입니다.
http://www.wolframalpha.com/input/?i=plot+y-2%280.0001%29%5E2%3D-5000%28x-0.0001%29
그래프까지..ㅠ감사합니다 이해해보려고 노력하게ㅐㅆ습니다!
아 그래프가 틀렸네요. 수정할때까지 기다려주세요.
수정했습니다.
질문자님의 의도에 맞는 답변을 드린다면
근사화의 직관으로 시도하신것 같은데
그 직관의 어디에 결함이 있는지 짚어보면
p 의 좌표가 원점으로 다가간다는것은 직선의 직선의 y절편이
작아지는데에 힘을 실어주는 요소이고
직선이 op와 수직이라는 점은 직선의 y절편이
커지는데에 힘을 실어주는 요소입니다.
이 두요소가 서로 경쟁하여 값이 0으로 수렴할지
무한대로 발산할지 0이아닌 상수로 수렴할지 결정되는 겁니다.
질문자 님께서는 수직이라는 점에만 초점을 맞추어서 직선이
벌떡~! 하고 일어서니까 무한대로 간다고 상상했는데
이것은 p가 0으로 다가감으로 주는 y절편의 감소효과를 간과한것이므로
잘못된것입니다.
물론 이문제를 직관으로도 오차없이 잘~ 째려보면
1/2 로 수렴함을 알수있습니다.
(힌트:원의성질+곡률반지름)
여기서 드리고 싶은 중요한 말이 있습니다.
직관적으로 푸는것 물론 좋습니다.
그러나 본인의 실력이 충분하지 않다면 직관적인 근사화로 푸는것은
상당히 위험합니다. 실력이 충분치 못하다면 그 직관에 중대한 오류가 있을수있는데
그것을 간과하게되면 ㅃ ㅇ ~ 인거죠
따라서 일단 정석적으로 푸ㅡㄴ 방법을 확실히 마스터 하시고
여유가 된다면 그때 그런방법을 연구하세요.
또 , 근사화를통한 직관이 본인스스로생각하기에 그다지
날카롭게 다듬어져있지 않다면 그냥 근사화를 포기하시고
정석으로 푸시는겁니다.
이 문제와 비슷한문제로써 포물선안에서 움직이는p점이있고 그 점을 지나는 원을그려서 반지름의극한을찾는문제였는데요 전 그문제에서도 p가 o에거의근접하면 반지름이0이될줄알았거든요 근데 과외선생님께서 아무리o에근접해도 곡률때문에 어느정도이하로는 작아질수없다고하더라구요.. 그부분에대해서 설명을좀해주시긴했는데 자세히들어가면 한참들어가야되서 설명해도모른다고하시더라구요ㅠㅠ 전 왜그렇게될수밖에없는지에대한 이유들이 자꾸 궁금한데 그런건 대학수학시간에배우나요? 아니면 공대나 수학과를가야 배울수있ㄱ는건지ㅠㅠ
거기에서도 곡률반지름에 대한 이해가 있으면 직관적으로도 구할수있습니다.
이문제는 지름의 길이가 답이고 님이 댓글에 다신 문제는
반지름이 답인데요.
곡률반지름이라는건 쉽게 풀어 설명하면 어떤 곡선의 특정한 점의위치에서의 곡선과 똑같은 곡률(꺾인정도)를
갖는 원의 반지름의 길이를 말하는 건데 , 이것은 대학교 과정이기는 하나
고등학교과정에서 배운것 만으로도 본인스스로 뼈를 깎는 고민을 해본다면 이와관련된
식을 유도해 낼수 있습니다. 실제로 제가 가르쳐본 학생중에 제가 논제를 툭 던져주고
약간의 힌트를 준다음 내버려둬 봤더니 끝끝내 혼자서 깨닫고 정리해내는 녀석이 있더라구요
이런 궁금증은 수학공부에 큰힘이 됩니다. 좋은 자세예요.
허나........ 님의 현재 실력이 여유있는 전국 상위 성적이 아니라면
어느정도까지에서 궁금함을 살짝접고 일단 기본고교과정에만 충실할 필요가 있습니다.
일종의 지적여유라고 할까요?
성적이 충분히 최상위이고 여유가 된다면 고민해볼만 합니다.
하지만 그렇지 않다면 급한불부터 끄시는게...(내신 및 수능 성적 을위한 공부.....)
정 궁금 하시면 제가 힌트를 드릴테니 고민해보셔도 좋습니다.
단, 추천하지는 않습니다.
제가 괜히 한 수험생의 시간을 잡아먹는 나쁜짓을 하게되지는 않을까 걱정입니다.
좋은 궁금증이고 수학시력향상에는 분명히 도움이 되지만... 시간제한이라는
입시생들의 벽 때문에...