수2 문제하나 질문할께요~
미분법 파트에서
함수 f(x) = x3-x2+5x+k = 5x2-4x+1-k 의 그래프가 서로 다른 두 점에서 만난다고 한다. 이때, 가능한 k의 값을 구하여라.
이게 문제인데요... 해설에선 y=F(x)의 그래프와 y=k 의 교점을 살피면 된다고 나왔어요~
근데 k를 이항하지 않고 풀 수 있는 방법은 수2 과정 내에서 없나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
휴대폰 화면에 뽀뽀를 하는건 썩 기분이 좋지 않네 10
그치만 여붕이들이 인증을 올리는걸 어떡해
-
일단 청바지 재탕하고 대충 후드티 입어야지
-
테슬라야아..
-
나도좀껴줘ㅠㅠㅠ
-
기분전환용 취미 4
오디오 인터페이스랑 마이크 하나 싼걸로 사서 기타랑 연결하고 미디 작곡 시작할 예정...
-
지방러인데 주변 동창들보면 카이스트 고대 연대는 좀 있는데 서울대는 아예 한명도...
-
대학 고민이요 0
현06 일반고 내신 3.4입니다 과기대 기계 충대 기계 떨어지고 수시 명지 전자...
-
공부잘하고싶다 1
쩝...
-
삼수 돈 모으려 하는데ㅜ 알바 경험이 없어서 안구해지네요ㅜ
-
하..그냥 소장용으로 하나 사야겠다
-
중학교내신은 예체능기가정보등 버린과목이랑 수행 다 포함해서 146명중에 23등이고...
-
플스는 거지라 못사고 pc는 뭔 요구사양이 안드로메다로 가버려서 불가능...
-
생1 유전땸에 3떠서 사문으로 도망칠려는데요 1. 서성한 공대 노리는거면 사탐런...
-
SKYSSHCKHS - 3 +- 0.5 메디컬 3.5 +- 0.5 대치동 및 강남8학군 +0.5
-
공통만점이긴한데…
-
입이 근질근질한데 돈이 읎어서ㅋㅋ어우 대충 그렇습니다 사생활이긴한데 밤에 바쁘게...
-
수능 끝나고 완주한 게임이 파크라이5 하나밖에 음슴 4
하루종일 컴퓨터 앞에 앉아있진 않았어도 꽤 많이 했는데 거의 대부분 깔았다 지웠다...
-
대학교 공통수학 범위가 고등학교로 내려오면 수능이 이런 느낌이겠다 싶음 솔직히......
-
잡내는 나는데 누린내는 나면 안됨 정구지는 양념 되어있어야하고 소면도 줘야함 김치랑...
-
문과미적이임 공통 12월까지 시발점+쎈 삼회독 (+노제도형노베공수간단히) 끝나면...
-
나빼고 다들 먼가 뒤에서 친한 것 같음
-
외로워뇨 8
진짜 진심임뇨
-
개빡치네 2
뻥임뇨
-
대학 가본적이 한번도 없음
-
츄베릅
-
하 개떨리네
-
국어 백분위 96 고정 vs 수학 백분위 98 고정 28
이럼 어떰
-
고딩 때는 많았는데 슬퍼
-
다들 잘자시게 8
-
25수능 독서 지문 및 문항 해설+엮어읽기, 앞으로의 학습 방향 2025 국수영탐...
-
님드라 이거 보고가 14
당신은 따봉 전기쥐의 가호를 받았습니다 그로인해 원서영역이 대박날 것입니다
-
406.3인데 cc임..
-
현역 물리 밀려쓰고 지거국가서 학고반수함 국어는 2등급에서 3등급 왔다갔다하는성적...
-
주무십쇼 2
오늘 할 거 다 함
-
풍산자 괜찮나요? 서술이 가장 자세해 보이던데
-
미야오 안나 8
-
벌써 16레벨을 앞두고 있구나....
-
혀누진..? 3
이건 그냥 영상만 활용한다는 걸까요?
-
내려가기도 했군여
-
[칼럼] 24학년도 수능 독서 분석(평가원화 ver.) 4
1년 전에 제가 작성했던 '2024학년도 수능 독서 주요문항...
-
1.25배속이었네
-
삼밤수 하고 싶은데. 서울대 가고 싶은데 제가 공통은 많이 맞추는데 확통을 못해서...
-
새벽이라 그런지 뒤지게 춥네
-
아이오 못토 조카이 나테 이타이타이노 돈케테 손자이칸지 보쿠보쿠 나가루루루 아이...
-
올해 국어 한거 정석민 문개정, 문상추, 문기정, 비독원, 비원실, 비실독 김승리...
-
잭팟 전형으로 서성한 ㅆ가능?
-
ㅇㅈㅎㅈㅅㅇ 5
-
진학사 기준 402인데 (과탐)가능한 곳이 있을까요?? 내신은 bb 예상합니다.
위첨자가 안써지네요...;
x옆에 있는 작은 수는 다 위첨자입니다~
x^3-x^2+5x+k = 5x^2 - 4x +1 -k
따라서
g(x) = x^3 - 6x^2 +9x -1 = -2k
라 두시고 g'(x)구하셔서 개형을 구하신후 교점이 두개일때 인 k값을 구해주시면 됩니다.
일반적으로 그래프가 만난다는 점은 대수적으로는 방정식의 해를 구하는 과정이며, 해석학적으로는 그래프의 교점을 의미합니다.
고교 과정에서 이차 방정식까지의 근은 직접 구하거나 판별식을 통해 근의 존재 범위를 추론하여 접근할수 있지만
삼차 이상의 다항 방정식에 대해서는 근을 직접 구하는경우는 매우 드물게 나타납니다. (가령 인수분해 되는정도...)
따라서 교점을 살피는것이 가장 적절한 풀이라 생각되구요.....
물론 k를 이항하지 않은상태에서 삼차와 이차함수의 교점이라 해석할수도 있지만
그렇게 되어버리면 삼차함수와 이차함수가 모두 k, -k만큼 평행이동 하기때문에 매우 복잡하게 구할수 밖에 없습니다.
일반적으로 수학문제를 풀 때에는 구하고자 하는대상을 한쪽으로 몰고 다른 대상을 반대쪽으로 몰아 등식으로 만든후
접근하는것이 보편적인 방법입니다.^^
아~
적절한 풀이가 있으니 굳이 돌아갈 필요가 없다는거군요~ ㅎㅎ
감사합니다~
돌아갈수는 있지만 비효율적이라는거죠.ㅎ
하지만 한번쯤은 A4에 펴놓고 해보시는것두 나쁘지 않을듯 합니다. ㅋ
두 함수가 동시에 움직이는걸 파악 할 정도면 저런 유형은 그냥 발로도 풀리겟죠 ㅋ