lim a->0+일때 f(a)-f(0)/a와 lim a->0+일때 f'(a)의 차이
(다시 치기 힘들어서 전자 후자로 줄일게요) 전자는 우미분계수를 뜻하는 말인데 후자는 고교과정내에서 다른 명칭이 없나요?
전자의 좌극한값과 우극한값, 함숫값이 모두 같으면 이 함수는 a에서 미분가능하잖아요.
근데 후자는 우극한값 좌극한값 함숫값이 모두 달라도 이 함수는 f'(a), 즉 도함수의 a값이 존재하니까 원함수는 미분가능 하다. 맞는 말인가요?
예전에 인강 들으면서 유제에 도함수 그래프가 주어져있는데 도함수의 그래프가 x<=0일때 y=-x,x>0일때 y=-x-1 이런 꼴이였는데 인강 쌤은 이게 도함수의 함숫값이 존재하므로 원함수는 0에서 미분가능하다고 하셨습니다.. 전 이때까지 우미분계수를 도함수의 우극한으로 취급해왔거든요..근데 도함수은 불연속이라면.. 도대체 원함수 그래프가 어떻게 그려지는지 상상이 안되네요.
질문을 요약하자면 도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가, 가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가.
꼭 답변해주세요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
입시에 무지했던 현역 때 친구가 하도 점공점공하길래 점프공익 줄임말인가 이상한...
-
고대 점공들어오라고 이3끼들아.
-
모아서 볼 수 있나오
-
예상 경쟁률보다 높으니까 개쫄리네 진짜 메디컬이면 좀 낙지좀 써라;;;
-
66명+ 연뱃받을 예정이신 1명 (화이팅!) 목표까지 남은 개수 34개
-
언제가 점공 5일차인지.
-
뭔일인지 정리 6
좀 부탁해여
-
ㅈㄱㄴ
-
단순 신고 누적으로 글이 내려감 어둠의세력들이 단체로 몰려와서 여론조작 가능
-
성장하고 나아갈 수 있는 해이길
-
개허수 현역 정시파이터 수학 학습법 알려주세여 ㅠㅠ 3
현재 예비고 3이고 고2 모고는 3-4 진동입니당 수학은 현우진쌤 시발점 수1 수2...
-
역사 질문받음 3
25수능 나무위키공부법으로 1등급 먹음 수특수완 문제만 1회독함 제발...
-
14시간 게임 10시간 취침메타라 울었어ㅜㅜ
-
차단목록 ㅇㅈ 11
소수정예엘리트집단입니다
-
25미적 100점보다 24미적 92점이 수학 더 잘하나요
-
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.찍맞...
-
시대 재종 반 5
여러분 이 성적이면 시대 재종 어느 반 들어갈 수 있나여?? 목동 대치 반이 다를까요??
-
오르비에서 떡밥도 몬따라가는데 오프라인은 진짜 힘들어..
-
알려줘요
-
엉아야 17
과외 받을래? ㅎ.ㅎ
-
궁금쓰
-
어디서 싸움? 0
ㅈㄱㄴ
-
심심해요알려주시요
-
하루에 8시간 분량이라도 넘겨보고싶었는데 하반기에는 단 한번도 하지못함 이러니 내가...
-
개추 누를게요
-
ㄹㅇ
-
처음 해보는데 너무 재밌다
-
다들 화낫서...
-
설수의 정시면접은 걍 상식이 최소한도로 존재하는 사람이면 면접떨이 존재할 수 없는...
-
낮에는 코스프레부터 온갖 씹덕들이 판치는데 저녁만 되면 귀신같이 일진 포스 인싸들이 점령함 ㄷㄷ
-
배틀물 애니 특 0
중요한 회차에서 제작비 몰아쓰고 나면 그다음 회차는 눈에띄게 작화가 어색해짐
-
진짜 개힘든데 오후 5시부터 새벽2까지 단순노동만 반복하는데 너무 힘듬. 내가...
-
빨리 점공올리라고 시발 ㅋㅋ
-
그걸 해내네
-
a갤이 낫지
-
인하대 학잠 1
어디서 사요?
-
올리고 나서 10분 안에 팔로우 2명 늘었어 기뻐
-
공대남은 연애하기 개씹헬인것같음 걍 다녀보니 그렇게 느낌... 애초에 과cc자체도...
-
근데 진짜 긁히셨나봄뇨 16
아무쪼록 힘내셨으면••
-
진짜 어딜봐도 예뻐서 눈 둘 곳을 못찾았음…
-
현역이 ㅋㅋ 1
과탐을 하는데 1년만에 1 받은 사람들도 있나요? 있다면 머리가 비상해야만하는가.....
-
나 고3 4모때 불안증세 도져서 국어 한번호로 기둥세우고 8등급이었나 받음
-
성적ㅇㅈ은 많이했으니 1년 공부량이나 보고가셈
-
연애보다 7
애완너구리가 필요해…
-
지는 3만원짜리해주고 갖고싶은거 물어보면 위시리스트 있어ㅎㅎ ㅇㅈㄹ해서 봣는데...
-
이거만큼 가성비 좋은거 못봄
-
ㅇㅅㅇㅅㅇ ㅇㅅㅇ
-
혼틈새벽ㅇㅈ 12
ㅇㅇ.
-
오래된 생각이다... 사탐런 여부에 따라 1~2급간 이상 차이날듯 최상위권아니면(이건잘몰름)
님이예시로든걸 함수로그려보면 x=0일때 좌측쪽은 x=0에평행한꼴이고 우측쪽의기울기는 -1이죠..
선생님이 잘못말하신게아닐까요?
그니깐 y축을기준 왼쪽그래프의 x=0일때는 0 즉좌미분값0
오른쪽그래프는 x=0일때 y값이 -1 즉 우미분값은 -1
엄밀하게말하면 x=0일때 도함수값은없는게맞아요 다만 좌우로나눌땐 나뉠수있단거죠..
근데 도함수의 좌극한값이 원함수의 좌미분계수라는건 배우지 않았습니다..
혹시 수학과학생이라서 확실히 아시고 답해주시는거면 제가 잘못알고 있다는거구요..
기출에서도 풀었던거같은데 불연속이어도 원함수는 연속일수있습니다 다만미분불가능할뿐이에요
저런그래프는 충분히존재할수있습니다...
님말대로 좌식으로정리하면 결국 lxl도 구간으로나누면 +0쪽은 x이니 +1이나오고
우식으로접근하면 lxl를구간에따라나눠서 정리하면 x>0일땐 +1이잖아요
그 문제는 미분을 피상적으로 아시는 분이, 별 생각없이 만든 문제라고 생각이 됩니다.
도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가 --> 예. 반드시 미분가능합니다.
가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가 -> 원함수는 연속일 뿐만 아니라, 각진 곳이 없어야 합니다.
원함수 f(x)가 구간 [a,b]에서 미분가능하다면, (보통 열린 구간으로 나타내는데 그냥 대충 이렇게 쓰겠습니다.) 우리가 친숙한 많은 경우에 그 도함수 f ' (x)가 연속이지만, 수학적으로 반드시 연속일 필요는 없습니다. 재미있는 성질이 하나 있는데, f ' 이 연속이 아닌 경우에조차도, f ' (a)와 f ' (b) 사이의 모든 값이 반드시 적절한 어떤 x (구간[a,b] 내의) 에 대해 f ' (x)의 형태로 표현이 되어야 합니다.
(따라서 작성자분 예처럼 도함수가 step 불연속인 예는 있을 수가 없겠지요.)
예를 하나 들어주시면 딱 catch 할 거 같은뎁 .. 말씀하신 형태의 함수로는 어떤 게 있나요??
그리규.. 제가 난독증이어서 그런가..ㅠㅠ
재미있는 성질이 있다며 말씀해주신 것과, 그 앞에 있는 문장이 제 눈에는 같은 의미로 보이는데 ... 무슨 차이가 있는 건가요???
원글이님의 질문을 읽어보시면
'도함수가 불연속이라도 함숫값만 있으면 원함수는 미분가능한가?' 라는 질문이
'도함수가 불연속이라도 도함수의 함숫값만 있으면, 원함수는 그 점에서 미분가능한가?' 라는 뜻의 질문일 것이라고 추측이 돼요~
도함수가 불연속이든 연속이든 그것과 무관하게, lim_{h->0} (f(x+h) - f(x)) / h 라는 극한만 존재하면 그 점에서 미분가능한 것이니까 미분가능하다 말씀드렸어요~ 즉, lim_{h->0} f ' (x+h) 가 존재하든 안 하든 상관없이 도함수의 값은 바로 앞 문장의 극한이 존재하기만 하면, 존재한다는 뜻이었어요.
그리고 예를 들어
y = x^2 sin (1/x) (x=0이 아닐때)
y = 0 (x=0일 때)
로 정의된 함수가 유명한 것으로 알고 있어요.
이 함수는 모든 실수x에서 연속이고, 미분가능해요. (원점 근처에서 마구 진동하기는 하지만, 진폭이 점점 줄어들어서 연속이고, 이 함수도 직관적으로 부드러운 함수이지요~ (부드럽다(smooth)고 하면 보통 무한 번 미분 가능하다는 뜻으로 쓰지만 여기서는 그냥 각진 곳이 없다는 뜻(한 번 미분가능하다는 뜻)으로 사용할게요)
그런데, 미분해보면 도함수는,
f ' = 2x sin (1/x) - cos (1/x) (x=0아닐때)
f ' = 0 (x=0)
이라서, x=0에서 도함수가 연속이지는 않지요.
이것이 도함수의 존재성과, 도함수의 연속성이 일치하지 않음을 보여주는 좋은 예이고요, 그럼에도 불구하고 도함수의 함수값 존재와 도함수의 연속성 사이에는 무시하지 못할만한 관계가 있기도 하다고 알고 있어요.
끝으로, 원함수의 도함수가 반드시 연속일 필요는 없다고 말씀드렸고, 따라서 도함수가 반드시 중간값 정리를 만족할 필요는 없음에도 불구하고, 실제로 도함수가 중간값 정리는 만족시킨다... 라는 것이 도함수의 재미있는 성질이라고 말씀드린 거였어요~ 즉, 도함수가 연속일 필요는 없으나 중간값 정리는 만족한다.
x^2 sin(1/x) 라는 식은 모의고사에서 만난 적이 있는 식인데, 그냥 문제 풀기에 급급하고, 맞췄다고 오답노트도 안했고
그래서 도함수의 연속과 존재로 생각해보진 못했네요 우와 진짜 신세계에요 역시 문제는 단지 풀줄 안다고 해서 다 알고 있다고 생각하면 진짜 오산이네요 ㄷㄷㄷ
신세계를 열어주셔서 감사합니다 !! 적어주신 글 두고두고 읽어봐야할듯여 ,, 데헷