무브
오르비
아톰
내 태그 설정
Cantata [348885] · MS 2010 · 쪽지
게시글 주소: https://cuttingedge.orbi.kr/0002776808
*단원: 수2 방정식과 부등식+함수의 연속~미분(이과 전용)*예상정답률: 40%*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
20
정답ㅊㅊ
댓글 너무 빨리달리네여 ㅋㅋ 문제 해석이 너무 어려워여 ㅠ
첫 정답자라 반가운 마음에ㅋㅋ 잘 하시네요
ㄴㄴ 오래걸렸어요 ㅋㅋ 님 pnmath.com 여기 오세여 ㅋㅋㅋ 여기다가 투척하면 사람들 좋아해여 ㅋㅋ
아ㅋㅋ 포만한 가입하고는 싶은데 네이버 아이디가 없어서요ㅜ 폰도 없어서 네이버 가입을 못함ㅜㅜ 나중에 사정이 나아지면 방문할게요ㅎㅎ
정답ㅋㅋ
이게 왜 정답률이 60퍼인지 모르겟네요 ㅋㅋ; 문제 이해 자체도 안되군요 ㅠㅠ
흠... 60퍼는 좀 높게 잡은거 같네요... 우선 무리방정식의 근을 찾습니다 그리고 문제 마지막의 극한값이 의미하는바를 캐치해보세요
아 어렵네요 ㅠㅠ 젠장 ㅠㅠ 풀이 좀 부탁드려요..
아랫분이 풀이도 올리셨는데 참고하세요ㅎㅎ 저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3) 결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
아랫분 풀이는 어딨나요 ㅠㅠ?
제가 댓글로 써드린게 그 풀이에요ㅎㅎ 비밀글로 주신 내용이라...
와 어렵네요 풀긴풀었는데 맞게푼건지몰겠네요 저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3) 결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20이나왔는데요 맞게푼건가요?ㅠ 수2기억이가물가물해서
네ㅎㅎ 완벽하네요ㅎㅎ
극소값t라는게 무슨말인가요?? t가 이차함수의 극소값이란소리??
네 그렇죠... 문제에서 이차함수 f(x)가 (가),(나)조건을 만족시킨다고 했으니 이차함수의 극솟값이라는 뜻입니다
f(x)=-3, f(x)+5 이렇게2개나오는게맞나요??
네 맞아요~
그러면 서로다른 실근의합 합은 -a인가요?
a는 어떤것의 미지수로 놓으신건지요...? 문제에는 a라는 문자가 없는데...
x의 1차항을a로 상수항을b로생각
f(x)=-3또는 f(x)=5일 때 각각의 합은 -a맞죠...
그럼 2개 걍더해서 해도되는건가요??
풀이도 같이 적어주시면 좋을 것 같습니다...
f(x)=x^2+ax+b라고 놓으면 5하고 -3 넘겨서 계산하면, 각각 같은 근은 존재할수가 없데되서 걍더했는데..그리고 t=-a^2/4+b이거 맞나요?? 그리고 a값은 고정된 실수이고 b값만변하고, 그래야하는것 같은데.. 그리고 식전개했더니..이상햊네요.
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3) 결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보면 3a=30 a=10이 나올겁니다
극소가 -3+0 인경우에는 이게무슨말이에여??
극소가 -3+0이라면 f(x)=-3인 경우의 해는 존재하지 않기 때문에 f(x)=5인 경우의 해만 생각하면 됩니다 마찬가지로 극소가 -3-0이라면 f(x)=-3과도 서로 다른 두 점에서 만나므로, f(x)=-3과 f(x)=5 두 가지 모두 각각 두개씩 해가 존재하구요...
아하..감사합니다.. 님은 머하시는분인지...대단
ㅋㅋ 감사합니다 저는 걍 이런거 취미로 하는 수험생과 대학생 사이의 신분에 있는 사람입니다
흐엉 ㅠㅠ 보기 '나'가 쫌 어려운거 같애요 ㅠㅠ 제 실력탁이겠죠 ㅋㅋ 죄송한데 해설좀 말씀해주실수 있으신가요? 너무 궁금하네용...
중간에 어떤분이 풀이도 올려주셨는데 그거 소개해드릴게요ㅎㅎ 저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3) 결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
25
아닙니다ㅜ
앗 실수;; 20인가요?
네 정답이에요ㅎㅎ
20인가요?ㅋㅋ
20이요 ㅎㅎ 문제를 잘만드시네요
정답입니다ㅎㅎ 감사합니다ㅎㅎ
20인가요??...ㅠ
20 깔끔하게 해석만 하면 풀게끔 만들어진 문제인듯 ㅋ
2026 수능D - 350
수능•내신 영어 과외
중3/고1/고2
단순하고도 일관된 생각의 틀
수학전문과외 친절한예진쌤입니다!
국영수과외
과학 과외
20
정답ㅊㅊ
댓글 너무 빨리달리네여 ㅋㅋ
문제 해석이 너무 어려워여 ㅠ
첫 정답자라 반가운 마음에ㅋㅋ 잘 하시네요
ㄴㄴ 오래걸렸어요 ㅋㅋ
님 pnmath.com 여기 오세여 ㅋㅋㅋ
여기다가 투척하면 사람들 좋아해여 ㅋㅋ
아ㅋㅋ 포만한 가입하고는 싶은데 네이버 아이디가 없어서요ㅜ 폰도 없어서 네이버 가입을 못함ㅜㅜ
나중에 사정이 나아지면 방문할게요ㅎㅎ
20
정답ㅋㅋ
이게 왜 정답률이 60퍼인지 모르겟네요 ㅋㅋ; 문제 이해 자체도 안되군요 ㅠㅠ
흠... 60퍼는 좀 높게 잡은거 같네요... 우선 무리방정식의 근을 찾습니다 그리고 문제 마지막의 극한값이 의미하는바를 캐치해보세요
아 어렵네요 ㅠㅠ
젠장 ㅠㅠ
풀이 좀 부탁드려요..
아랫분이 풀이도 올리셨는데 참고하세요ㅎㅎ
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
아랫분 풀이는 어딨나요 ㅠㅠ?
제가 댓글로 써드린게 그 풀이에요ㅎㅎ 비밀글로 주신 내용이라...
와 어렵네요 풀긴풀었는데 맞게푼건지몰겠네요 저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20이나왔는데요
맞게푼건가요?ㅠ 수2기억이가물가물해서
네ㅎㅎ 완벽하네요ㅎㅎ
극소값t라는게 무슨말인가요?? t가 이차함수의 극소값이란소리??
네 그렇죠... 문제에서 이차함수 f(x)가 (가),(나)조건을 만족시킨다고 했으니 이차함수의 극솟값이라는 뜻입니다
f(x)=-3, f(x)+5
이렇게2개나오는게맞나요??
네 맞아요~
그러면 서로다른 실근의합 합은 -a인가요?
a는 어떤것의 미지수로 놓으신건지요...? 문제에는 a라는 문자가 없는데...
x의 1차항을a로 상수항을b로생각
f(x)=-3또는 f(x)=5일 때 각각의 합은 -a맞죠...
그럼 2개 걍더해서 해도되는건가요??
풀이도 같이 적어주시면 좋을 것 같습니다...
f(x)=x^2+ax+b라고 놓으면 5하고 -3 넘겨서 계산하면, 각각 같은 근은 존재할수가 없데되서 걍더했는데..그리고 t=-a^2/4+b이거 맞나요?? 그리고 a값은 고정된 실수이고 b값만변하고, 그래야하는것 같은데.. 그리고 식전개했더니..이상햊네요.
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보면 3a=30 a=10이 나올겁니다
극소가 -3+0 인경우에는 이게무슨말이에여??
극소가 -3+0이라면 f(x)=-3인 경우의 해는 존재하지 않기 때문에 f(x)=5인 경우의 해만 생각하면 됩니다
마찬가지로 극소가 -3-0이라면 f(x)=-3과도 서로 다른 두 점에서 만나므로, f(x)=-3과 f(x)=5 두 가지 모두 각각 두개씩 해가 존재하구요...
아하..감사합니다.. 님은 머하시는분인지...대단
ㅋㅋ 감사합니다 저는 걍 이런거 취미로 하는 수험생과 대학생 사이의 신분에 있는 사람입니다
흐엉 ㅠㅠ 보기 '나'가 쫌 어려운거 같애요 ㅠㅠ 제 실력탁이겠죠 ㅋㅋ
죄송한데 해설좀 말씀해주실수 있으신가요? 너무 궁금하네용...
중간에 어떤분이 풀이도 올려주셨는데 그거 소개해드릴게요ㅎㅎ
저 방정식 풀면 무연근0을제외하고 f(x)가 5,-3이나오는데 극소가 -3+0 인경우에는 근이2개고(f(x)=5),극소가 -3-0인경우에는 근이4개고(f(x)=5,f(x)=-3)
결국 그두개의합이30이라는건 6개근의합이 30이니까 a를두근의합으로보고 3a=30 a=10 이렇게해서 f(x)가 x제곱-10x+상수 이렇게나와서 미분때려서 15대입해서 답이20
25
아닙니다ㅜ
앗 실수;; 20인가요?
네 정답이에요ㅎㅎ
20인가요?ㅋㅋ
네 정답이에요ㅎㅎ
20이요 ㅎㅎ 문제를 잘만드시네요
정답입니다ㅎㅎ 감사합니다ㅎㅎ
20인가요??...ㅠ
20 깔끔하게 해석만 하면 풀게끔 만들어진 문제인듯 ㅋ