그리고 사실 교대급수도, 인접한 항끼리만 순서를 바꾸면 수렴성이나 수렴값은 바뀌지 않습니다. 점점 더 멀리 있는 항들끼리 순서를 바꿔나갈 때 문제가 일어나지요.
무슨 소리냐 하면, a(n)의 순서를 바꾸는 것을 우리는 자연수 N에서 자연수 N으로 가는 어떤 일대일 대응 σ : N → N 을 생각하여 a(σ(n)) 을 고려하는 것으로 이해할 수 있는데, 이때 n 과 σ(n) 의 차이가 일정한 범위 내에서 유지된다면 (즉, 어떤 양수 m이 있어서 |n - σ(n)| ≤ m 이 항상 성립한다면) ∑ a(n) = ∑ a(σ(n)) 이 됩니다. (증명도 의외로 간단합니다.)
고등학교 과정에서도 그렇지만, (-1)^n 꼴은 차라리 -1, 1로 분류하는편이 좋습니다. 그렇게 분류하면 교대급수꼴이 나오겠죠.
콘실크 님 말씀처럼, 부분합의 실수부와 허수부를 살펴보면 양쪽 모두 교대급수 판정법을 적용할 수 있는 구조로 되어 있습니다.
아니면 디리클레 판정법같은 해석학적인 판정법을 때려박아도 나오긴 합니다. 디리클레 판정법은 교대급수 판정법의 일반화이지요. 자세한 건 http://en.wikipedia.org/wiki/Dirichlet%27s_test 를 참조하세요.
궁금해하실지는 모르겠지만, 참고로 저 무한급수의 값은
-(1/2)ln2 + iπ/4
입니다. 좀 더 일반적으로, 복소수 z가 |z| ≤ 1 이고 z ≠ 1 이면
-log(1-z) = z + z^2/2 + z^3/3 + z^4/4 + …
가 성립합니다. 위 식에 z = i 를 대입해보면 위의 결과가 나오는 것을 확인할 수 있습니다. (1 - i = √2 e^{-iπ/4} 니까요)
답변감사합니다. -ln(1-z)의 테일러급수 였군요 ㅋㅋ
그런데 링크된 곳에 3번째 조건 서메이션bn 의 절대값이 M 보다 작다를 경계가 존재한다 정도로 해석하면 되나요?
그런데 제가 헷깔렸던건 교대급수로 해보긴 해봤는데 그걸로 하려면 짝수항, 홀수항을 분리해서 계산 해야되더라구요. 그런데 절대수렴해야지만 그렇게 분리할수 있다고 해서 혼동이 됐습니다.
근데 어짜피 분리해서 각각이 수렴하니 원급수도 수렴한다고 볼 수 있겠네요... ( 물론 분리했을때 어느 한쪽이 발산하면 판정할수 없겠지만.)
그렇지요.
그리고 사실 교대급수도, 인접한 항끼리만 순서를 바꾸면 수렴성이나 수렴값은 바뀌지 않습니다. 점점 더 멀리 있는 항들끼리 순서를 바꿔나갈 때 문제가 일어나지요.
무슨 소리냐 하면, a(n)의 순서를 바꾸는 것을 우리는 자연수 N에서 자연수 N으로 가는 어떤 일대일 대응 σ : N → N 을 생각하여 a(σ(n)) 을 고려하는 것으로 이해할 수 있는데, 이때 n 과 σ(n) 의 차이가 일정한 범위 내에서 유지된다면 (즉, 어떤 양수 m이 있어서 |n - σ(n)| ≤ m 이 항상 성립한다면) ∑ a(n) = ∑ a(σ(n)) 이 됩니다. (증명도 의외로 간단합니다.)