판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
칼럼쓰러 돌아왔어요!
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
저번 칼럼은 이거였어요!!
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
정답 갑니다.
이런거죠. 자 그러면 이제 y축 평행이동이 남았습니다. 한번 해볼까요?
이렇게 되면, 함수의 모든 y값은 0보다 큽니다. 만약 판별식이 0보다 크면
Y축 평행이동은 아래쪽으로 진행되겠죠! 그렇다면 x축과의 교점이 생길겁니다.
이렇게요!
이제, 굳이 판별식의 결과를 외우지 않아도 됩니다.
그림으로 이해하고 수식으로 생각하면 되잖아요!
제가 하고싶은 것은 이거에요. 생각으로 이해하는 것.
외우긴 외워야하겠죠. 하지만 쉬운 언어로 외우면 되잖아요
굳이 모두가 어려워하는 형태로 외워야하나요?
자 그렇다면 오늘도 다음주제 갑니다.
빡세다.. ㄷㄷ
이번 칼럼주제는 굉장히 쉬워요! 여러분은 좌표평면을 어떻게 생각했을까?
그것에 대한 질문입니다. 답은 다음 칼럼에서 쓸게요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
두리번두리번
-
단답형으로 바꾸고 가능한 a9의 값을 모두 찾아서 다 더하라고 했으면 진지하게...
-
요즘세상 1
무료과외도있네요 ㄷㄷ
-
ㅇㅇ... 미친듯이 아프다가도 3개월 지나면 추억이 됨
-
나만궁금해하는거같음 ㅠㅠ 나까지안되나 ㄹㅇ
-
무료하다 8
사갈사람 구해요
-
범바오 수1 4
범바오 수1 24강 짜린데 21강까지 사인코사인인건 뭐임 수열은 3강컷인건가
-
강대n제 질럿다 2
-
새터에 12
닌텐도 스위치 가져갈까요 인싸될 수 있나요 근데 사람들이 나를 좋아하는 게 아니라...
-
롱패딩 장점 9
안에 과자 넣으면 고정됨
-
이 사람 말고 다른 사람 못만날거같고 그래? ㄹㅇ 카리나가 와도 안바뀔거같은데
-
이게
-
상상)))님이 원하는 년도로 돌아갈수 있으면 언제로 돌아감? 34
단,코인,주식,복권 등등 돈과관련된 것 확인 불가능 딱 특정 년도로 돌아갈수있음...
-
의외로 중국인의 19퍼는 기독교인임 기독교인은 천주교 개신교를 포함하는 큰 틀이고...
-
ㅈㄴ 후회중 그때 내가 뭐라고 사겼으면 성격 잘맞고 착해서 지금까지 만낫을듯.....
-
100점인줄 알았는데 22틀림 아직도 오답은 안 해서 왜 틀린지는 모름
-
주변에 있다는건 큰 행운인듯 그래서 난 행운아야
-
00부터는 3,4인거 예전에 처음 알고 충격먹었는데ㅋㅋㅋ
-
“할머니 나 배고파 죽을거 같아요 밥 좀 주세요” 바로 갈비 ON
-
서울캠 의대는 없는줄..! 오..
-
시간빠르다....
-
맞나요?
-
시발점에서 뉴런으로 가기 전 문제집 어떤게 좋을까요 1
시발점 인강 1회독 후 책 2회독 시작하며 시발점 전문항 다시 풀면서 유형서나...
-
수능을 더 잘 볼 수 잇엇을텐데
-
짝사랑은 너무 아프다 25
5년넘게 짝사랑중… 왜 요즘은 연락 안오니 누구 생겼니
-
피곤하군 17
꾸벅
-
벽제갈비에서 고기만 먹고 배 불러보기 혹시나 돈 많은 옯붕이가 있다면 쪽지 부탁드려요
-
튀김가루 사오기와 반죽 섞기 퀘스트를 완료하고 전 먹자
-
이게 옯창이지 3
펑
-
스펙평가좀 28
키 2cm 몸무게 90kg 원세대 의류학과 저녁 먹는중 뭐먹는진 비밀임 코딩할 예정 평가좀
-
독서토론대회는 하면서 왜 수학경시대회는 안함? 다양하게 해야하는거 아닌가 건국대...
-
이미 마음가짐은 외대 장학생
-
이별 극복하는 방법좀 18
얼마전 헤어졌는데 너무 슬프고 마음 아파서 공부가 손에도 안잡히는데 진짜 극복하는...
-
해도 후회 안 해도 후회라면 해보는 게 나을 수도...?
-
떽띠땐뜨 0
-
경제 vs 경영 2
Cpa 할거면 경영이 낫죠??
-
과외 갈 때 ㅈㄴ 꾸미고 가는중 ㅋㅋㅋㅋㅋㅋ...
-
쪽지하세요 4
-
그냥 물어본건데 ㅋㅋㅋ 전 113나와요.... 저런 사람 실제로 본적 있어서 ㅋㅋ
-
물2 제발 0
물2 장인수쌤 들은 분 있나요 개념잡기에 어떤가요 아 그리고 물2가 생2처럼 개념만...
-
잘못뽑은 반장 0
이란책 아심?
-
여친 재수해서 2월부턴 일주일에 한번 만나는데 아침에 수영 저녁에 달리 운전면허...
-
내일의 나를 너무 잘믿음 내일의 나에게 너무 많은걸 토스함 내일의 나는 내일 모래의...
-
공부는 기세다 1
LAMY 샤프 사야겠다 없으니까 텐션 떨어지네
-
합성함수에서 속함수가 역함술때 원래함수 그래로 그리고 xy바꿔서 축 맞추기 캬
-
천국의계단 10단계 20분 ㄱㄱ 사람죽어요
-
살찌워보자~~
-
비독원듣는데 본인이 누가 그렇게 말한거 봤다면서 말하시던데 실전에서 하기엔 좀...
항상 잘 보고 있어요
청의미님
ㅎㅅㅎ..
생각 많이 하셔야합니다
기본은 생각이지요. 저는 그걸 전달하고싶어요.
좋은 내용 감사합니다!! 근데 곡선 위의 접선 해설 어쩌구 글 링크가 이상한 곳으로 가져요ㅠㅠㅠ
헐 뭐임... ㄷㄷㄷ 수정할게요 감사합니다.
역함수2의x승으로 보면 a가 1이면 상수함수로 정의되고 a가 o보다작으면 함수로 정의되지 않기때문아닌가염?
왜 함수로 정의되지 않나요?
함수가 정의되려면 어떻게 해야할까요?
좌표평면은 무엇인가요?
이렇게 질문하시면 완벽하십니당.
정답이십니다..만 a가 1이 아닌 이유를 좀더 생각하실수 있을것같아요!
a가 1면 상수함수로정의되는걸 굳이 지수함수에도 포함되게 정의되지않게하기위해서....?
우리는 항상 이 설명이 쉬운가 어려운가 고민해야해요.
수능 시험장에서 기억할만한 성질의 것인가.
이것을 고민해야합니다. 기억하려면, 적어도 헷갈리지않으려면
최대한 쉬워야한다고 생각합니다.
a.b가음수여도함수는 함수입니다.
양수여야하는이유는 중학교때는 지수법칙을
자연수지수에서만 정의했는데 실수일때까지 확장하기위해 여러가지정의를하고
밑이 음수인경우는 예외가생기기때문에 밑조건을 양수로둔거고 밑이1일땐 상수함수가되버립니다.
니니.... 이거 좀 그런경우가있어요..ㅠㅠ
무슨경우를말씀하시죠?
밑이 음수인 경우는 예외가있는게 어떤경우죠?
{(-2)^2}^3/2의경우에는
자연수지수일때처럼 바꿔서 계산할때
그냥계산할때 8=/=-8처럼 결과가 달라진다는 의미입니다.청의미님의 말씀은 무엇이죠?
다음칼럼을 기대하세요! 라고 말하기위해서 말을 아낍니당
근데 정말 좋은 생각이셔요!
저또한 그 생각과 비슷합니다.
하이드님. 생각과 고민이 공부의 기본입니다.
이렇게 생각하고 고민해서 이뤄낸 개념은 쉽게 잊지않아요.
저는 이런 생각을 가지고 이렇게 덧글을 달고있지요 ㅎㅎ
이게 옳다고 생각합니다. 그리고 하이드님께서도 잘하신것을 믿어요.
답은 반드시 다음칼럼에 올려드리도록 하겠습니다!
http://orbi.kr/00011588911
로그는 본래 1/x의 적분형에서 정의된 함수이기 때문에...?
아아아아아아?????????
좀더 자세히 설명해주시겠어요?
1/x의 그래프를 보면 알겠지만, 이것은 0에서 적분 불가능하기 때문에 b가 0보다 작은 경우는 있을 수 없습니다. 애초에 논할 의미도 없고요
a의 값은... 생각 좀 해볼게요
어렵네요 갑자기
좋다.. ㄷㄷㄷ
하지만, a^x=b에서 a가 0보다 크면 b는 항상 x가 어떻게되던 0보다 커요.
근데 되게 해석이 좋으신듯합니다.
원래 시간상으론 그게 먼저예요
1/x를 적분하려고 보니, 우리가 흔히 쓰는 다항함수 적분법이 안통하는 겁니다
분명히 적분은 될텐데 말이죠
그래서 아 모르겠다 일단 뭔지 몰라도 만들어놓고 그냥 쓰자... 하다가 보니, 웬걸 이게 지수함수의 역함수인 겁니다
그러나 교과서에서는 거꾸로 가르치죠
네 맞습니다.
만약 a까지 그것으로 설명할 수 있으시면.. 대박적
하지만 a는 적분에서 e로 결정되어있을것 같아요..ㅠㅠ
매우 좋은 생각인듯합니다.
0보다 큰 이유는 잘 모르겠어용 ㅠㅜ a가 1이아닌 이유는 y=1^x 일땐 함수이지만 그 역함수인 밑이1 인 로그함수를 그려보면 x=1이고 이건 함수가 아니니까 안되는거 맞나요??
더 생각해볼 여지가 있습니다.
http://orbi.kr/00011588911
칼럼잘보고있어요! 보면서 느끼는데 이런 무심코 지나쳤던 개념을 익히는건 수학 1,2등급에서 고난이도문제를 풀기위한 사고방식에 도움되는거겠죠? 어느정도 고지에 안이른 사람이라면 저런 세세한부분보다 일반적인 문제풀이양을늘려 3이나4 등급에서 2등급정도로 정착하는게 우선인부분인지 궁금해요!.. 작년에 개념과 원리에 너무집착하다 문제푸는 양도 충분치않아서ㅠㅠ 재수하게된거같네요
ㄴㄴ 일단 세부적인 부분도 보면서.
생각 하면서 문제를 풀고, 나중에 다시 생각하시고
그러시면 됩니다. 개념과 원리에 집착하다 문제 못푸는것은 절대 안되지만
문제풀이만을 하시면 안됩니다.
제생각에는 지금은 문제풀이 양을 늘리고
문제에서 개념에 대한 생각을 해주시면 될것같아요.
한문제 한문제 풀때마다 기계적으로 풀지말고 문제에서 요구하는 조건이나 개념의 의도를 알려고 노력하라는 뜻이죠?? 요즘 고민중인 부분이었는데 감사합니다..!
아닙니다! 열심히 하셔요..!!!