y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
저번주의 칼럼은 바로 이거였어요!
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
정답갑니당.
A : y=0 말고 y=1/2x도 접선, y=-1/2x도 접선…. 그러면 접선이 매우 많아지죠.
원점을 지나고 기울기가 -1에서 1 사이인 직선 모두가 접선이 됩니다.
모두가 원점을 스치면서 지나가니까요
접선의 정확한 정의는 미분계수를 기울기로 갖는 직선입니다.
미분계수는 그래프 위 두 점 사이의 기울기의 극한이며, 접선의 정확한 정의는 할선의 극한입니다.
할선의 극한이라는 말이 애매하지만, 극한의 정의로 미루어보면 극한값이 존재하려면, 좌극한과 우극한이 같은 값으로 수렴해야 합니다.
직선으로 확장시켜보면, 좌측에서 가까워져 가는 할선과 우측에서 가까워지는 할선의 극한 모두 한 직선으로 일치해야 합니다.
이렇게요!
좌극한과 우극한이 다르면 극한의 정의에 의해 어떤 것에 가까워진다고 단정짓기 애매하니까요! 그 사이 어떤 값을 택해야할지 애매한 것입니다.
우리는 한점에서 직선을 그을 수 없습니다. 하지만 접선은 그을 수 있게 된 이유는 극한을 통해 그 직선을 정확하게 하나로 결정할 수 있었기 때문입니다. 결정할 수 없다면? 당연히 한점에서 직선을 그을 수 없으니, 접선이 정해지지 않겠죠! 보통 뾰족점에서 접선이 무한히 많이 생깁니다. 이것을 첨점이라 하며, 그 점에서 함수는 미분 불가능합니다.
x값에 그 값에서의 미분계수가 y값이 되어 대응되는 함수를 도함수라 합니다.
도함수도 함수입니다! 즉 x값 하나에 y값 하나가 대응되어야하며, 도함수가 존재하려면 원함수가 정의되는 곳에서 모두 미분 가능해야 합니다.
접선이 많으면, 대응되는 접선의 기울기가 1개 이상이기 때문입니다.
Q : 그렇다면 왜 y=|f(x)|에 미분 불가능한 점이 생길 가능성이 있을까요?
절댓값의 정의는 수직선 위의 원점에서 어떤 점까지의 거리입니다. 항상 양수에요.
절댓값 기호 안의 값이 음수일 때는 마이너스가 붙어서 양수가 됩니다.
절댓값 기호 안의 값이 양수일 때는 f(x), 절댓값 기호 안의 값이 음수일때는 –f(x).
즉, 함숫값의 부호가 바뀔 때 함수또한 바뀐다는 것입니다!
서로 다른 함수 y=f(x)와 y=–f(x)가 이어져 있습니다. f(x)가 모든 실수에서 미분가능한 함수라 하더라도 y=f(x)와는 다른 함수 y=-f(x) 두개가 이어져있을때 미분 가능한지는 알 수 없습니다.
즉 함수가 바뀌는 부분에서 미분가능한지를 조사해야합니다.
함수가 바뀌는 부분이 어디인지에 주목하면 미분가능성 문제를 수월하게 풀 수 있습니다.
1. f(x)와 에 절댓값이 붙어있다. 이 절댓값 함수는 어디에서 바뀔까?
2. f(x)는 x=-1에서 함수가 바뀐다. 그러면 이것을 기준으로 나눠주면 될거야.
3. 는 어디에서 함수가 바뀔까?
……………….
이런 식으로 문제풀이가 진행됩니다.
1. g(x)가 절댓값이 두개 붙어있다. g(x)는 x에 따라 함수식이 바뀔거야.
2. 바깥의 절댓값을 생각하기엔 안의 절댓값 때문에 정확하게 알 수가 없다.
3. 일단 맨 안쪽의 절댓값부터 생각해보자. X=0 좌우에서 함수가 바뀔거야.
4. X=0 주변에서는 함숫값이 1 근처일거야. 그 주변에서는 항상 양수일거야.
5. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
6. X가 0이상에서는 함수가 언제 바뀔까?
7. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
사실 문제를 풀 때, 계산을 전혀 할 수 없어서 문제를 못푸는 경우보다는
문제를 풀기위한 아이디어가 부족해서 못푸는 경우가 많습니다.
그러므로 그 아이디어를 계속 고민해야하며, 그 근거는 개념에 있습니다.
사실 많은 분들이 예견해주신듯 합니다..ㅋㅋㅋ
요약하자면, 극한값은 좌극한과 우극한이 일치해야 존재합니다.
일치하지 않으면, 그 사이의 어떤 값으로 가까워지는가를 설명하기 힘들기 때문입니다.
그러면 다음주제를 소개해볼게요
유리화는 왜 하는걸까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모두 굿밤
-
난 도저히 못 보겠던데 10
ㅍㄹ<--취존불가
-
아직 알바 못구해서 돈이 없는데… ㅜㅜㅜ
-
지금 이 헬조선에서 미국으로 뜰수 있다는게 미친 메리트 잖음
-
그냥 순수한 궁금증
-
나도 행복할수잇었을텐데
-
학종 1
생명쪽 학종쓸거면 공동교육과정 들으면 좋겠죠??
-
흠
-
편입 현실 조언 부탁드립니다. 아무말씀 이여도 좋습니다 1
저는 이번년도 2월1일까지 군대에서 수능준비를 하다 포기하고 전문대에 들어왔습니다....
-
진학사대로만 주세요 85 2컷이라도 제발 하
-
노래추천받 15
사랑노래 빼고 잔잔쓰한 느낌으루...
-
고1 통과 때 너무 재미없어서 '아! 지구는 내 길이 아니구나!' 싶었는데 그냥...
-
의대생이되고싶음 입시라는 지옥에서 생존해 돌아왔다는 것으로 내 존재를...
-
애니보기.
-
행복하기를 바라는거는 주제넘은 바램이 아니였을까
-
어차피 남들보다 뒤쳐진거 미련 없도록 한번 더하자 에라 모르겠다 학벌은평생남는다니깐...
-
기말 시험이 12월 6일에 끝나는데 언제부터 수능 공부를 시작할까요?? 제일 늦게...
-
여러분들 지금 최근 글들에 댓글이 거의 없다는 사실, 아시나요? 20
다들 따뜻한 마음으로 댓글을 달아주는 청년이 되길 바랍니다 그럼 2만 총총..
-
막장애니 볼건데 5
기대되네 반전이 얼마나 많을지.......
-
집가기 겁나 피곤하다 12
누가 나 납치해서 데려다 줬으면..
-
진짜 손절하고싶다 11
진심 손절하고싶음... 아 진심 역겨워 미쳐버리겠음
-
푼 컨텐츠 후기 글이나 무물보로 공부 꿀팁같은거 작성하신 분들 있으면 공유부탁드립니다!
-
ㄷㄷㄷ
-
수1,2,확통 실력 다 비슷하고 7일 공부량으로 따졌을 때 3일은 수1, 3일은...
-
아예 의미가 없나요…? 3-4칸 떨어진다고 그러던데 그럼 전 지금…제가 7~8칸...
-
통통이고 이번 수능 14, 21 틀 입니당. 겨울에 시대인재가 아닌 타 선생님의...
-
게임 존나 좌우하는데 병신만 잡힘
-
전 심심하니 질문해드림 96
댓 남기면 질문 해드릴게용
-
저 때문에 칸타타님 끌올된거 같아서... 죄송합니다
-
98주면안되냐고 ㅜㅜ
-
으아악
-
운동2시간완뇨 0
존나힘드네 ㄹㅇ 근데재밌음 저녁샐러드 달걀 단백질파우던가 뭔가 먹음 냠냠
-
왤케 투데이 높음
-
학교 학원 외에 취업할 수 있는 분야가 있나요?
-
그만할까 싶다가도 의대는 가야만 한다는 생각이 다시금 떠오릅니다. 지옥에서 태어난...
-
수학 가채하다가 한개 더 틀림거 같아서ㅋㅋㅋㅋㅋㅋㅋㅋㅋ아효 죽고싶네요..누가...
-
미적1 수학인강 4
올해 88(28,29,30틀) 인데 재수할 생각입니다 김범준 선생님 대성 런칭...
-
부거 먹고싶다 18
내일 머글까
-
질문 받습니다 9
없으면 좀 서운함
-
진학사 기준 연대식 710점 정도 나오네요.. 지금 진학사 컷으로는 잘 모르는거겠죠..?
-
혼자 평가원 풀 때 쭉 1뜨다가 이번 수능 88떴는데 내년에 영어 인강 들어야할까요?
-
함께 있단 이유로 행복했었던 우리들의 겨울날의 소중한 기억들 0
좋은 날엔 언제나 네가 있기에 잊을 수 없는 memories
-
나 전적대 꼭 탈출해야 해 천하제일 장원급제 시험 붙어야 해 기운 좀 줘 냥대 너무너무 가고 싶어
-
16화까지 있다 ㅎㅎㅎㅎㅎ 비질란떼 8회민에 끝나서 속상했는데 주말까진 걱정...
-
취미는 문법(주로 국어사) 공부와 만화책 보기입니다
-
수강료 전장 받고 반수해서 600 넘게 아꼈는데 주식으로 700잃어서 원점...
-
아무리 생각해도 짜다는 느낌입니다.아직 가채점 단계이지만 표점과 백분위는 굉장히...
-
피램 후기 보고 올리는 작수 5 -> 화작 94 가 쓰는 피램 리뷰 0
https://orbi.kr/00070002609 제 성적표입니다. 국어 말고는 못...
-
음…
Lim (a-b)와 같은 형태에서 a,b 둘다 발산하는 형태이면 극한의 연산과 관련된 형태를 사용할 수 없기 때문에 유리화를 통해 극한의 연산 법칙을 적용 가능한 형태로 바꿔주는것 아닌가요...? 그나저나 일반청의미님 글이 모아보기에서 계속 안보여욤 ㅠㅠ
그래도 lim c/d 에서 c, d 둘다 발산하는 형태일걸요!
사실 lim (x-1)/(x-2)같은거에서 최고차항 지수/계수비교하는게 일상화되어서 놓칠수 있는 부분이지만 x값이 임의의 상수값이 아닌 무한대로 발산했을때의 극한의 경우 lim1/x=0과 같은 몇개의 공리를 적용할 수 있는 형태로 변형한다 (ex.x-1/x-2를 (1-(1/x))/(1-2/x))와 같은 형태로 )뭐 그렇게 배웠던 기억이 나서욤! 유리화도 비슷한 맥락으로 이해했던것같은...
넹 더 자세하게 설명해주면 되십니당.
또한 분모의 유리화는 왜 하는지도 생각해주시면 좋아요.
유익한정보 고맙습니다~~ 이런글은 닥팔이야! ^,^