이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이미지 써드림 go 57
귀찮아지면드랍함
-
암기에는 도가 튼 표본과 강사진을 국경같은 지엽으로 변별하는 것은 이익이 크지 않음...
-
서울대식 400 0
어디정도 됨? +내 점수가 어디서는어메가는 399.5이고 텔그에서는 404.5인데...
-
아침에 글을 한번 썼지만 저는 지난 달에 로컬 회계법인으로 이직했고 올해 대거...
-
질답받아요 5
신체 주소 신상은 알아서 PASS하겠음
-
[사설]그냥 대학 장학금만 늘릴 게 아니라 졸업장 제값 하게 해야 0
교육부가 2025학년도부터 국가장학금 지급 대상을 중산층 자녀에게까지 대폭...
-
근데 정작 교육서비스 받는 게 ㅈㄴ 힘들다는 거 가격이 씹사기라 걔들 입장에서는...
-
지금 텔그 1
서버터진거맞나요
-
fancy
-
질받해요 14
-
누군가가 선넘질은 해달라고 했는데 여르비에게 님 ㅂㅈ 넓어요? 라는 질문을 한 거죠...
-
3900원 개꿀맛임
-
다 했다 10
내가 해냈다구!
-
이렇다는건 채점기준에 부합하는말만 다 들어가면 좀 논리적비약이 있거나 서술이 좀...
-
간만의 새르비네
-
유튜브에 ‘수능 필적확인문구 노래‘ 검색하면 나옴
-
아 뭐가 문제지 진짜 개화나네
-
인증특) 2
아무도안돌려서 돌리면 돌아오는건 댓글2개와무관심뿐이라 수치사함
-
매사에 부정적인 분이셨는데..
-
ㅇㅈ 2
찜질방 팡
-
ㅇㅈ 4
채영누님 고트!
-
ㅇㅈ) 눈 ㅇㅈ 15
-
https://orbi.kr/00070073437/%ED%8F%89%EA%B0%80%...
-
와 ㄹㅈㄷ 사실 1
내일 (사실 오늘) 토요일임 ㅋㅋㅋㅋ캬캬컄 게다가 일정도 약속도 없음 드디어...
-
틀딱 아님 ㅇㅇ
-
벅벅 긁었다 벅벅 풀었다 이만큼 시원한 의성어가 없음 뭐라하지 그 묵직하고 두껍고...
-
질문 안하면 오늘 밤 꿈에 양손에 민초 든 민초한입 나옴
-
아무나한번시작해볼래요? 재밌잖아요
-
손이시립대 ㅋㅋ
-
얼마나 행복하고 인생이 아름다울까..
-
인증메타돌려줘 3
으응나도보고싶어오랜만에
-
쫄지 말고 파이팅 하세요! 면접관 교수님분들 다 친절하시답니다 ㅎㅎ - 지금 퇴근하는 대학원생이
-
삼수 2
삼수 결정하신 분 있나요?ㅠㅠ
-
교과개념도 해야함?
-
틀.딱은 빨리 도망가야겟슴
-
신유형 zero에 평이한 수준으로 47이면 그정도로 고이진 안ㅍ은듯 ㅇㅇ.....
-
질받 해볼래요 32
ㄱㄱㄱ
-
인증메타만 매일 굴리다가 2월돼서 탈릅한사람 있었는데 올해도 오려나
-
작수 9모 둘다 문학에서 35분 썼고 독서는 틀린 적 없습니다 문학에서 5 6개씩...
-
프사 복귀 완 16
프사 너무 밝아보임 이정도가 적당한듯
-
오늘기분이좋아요 8
왜냐면 수능을망쳐도 괜찮은게아닐까라는 생각을전개했었거든요 이대로도괜찮지않을까요?...
-
지듣노 1
시간차가 좀 나지만 암튼 지듣노
-
치 지구의 운동에 대하여 지동설 관련 만화. 재밌음 헬크 재밌는 판타지 만화 기생수...
-
물리 48드립은 0
어디서나온거임
-
인증메타돌려줘 0
제발
-
재수하는데 의대노리고할거같은데 어디가 좋을까요?
-
진짜모름 번장에 팔면 지금 팔리나? 가격을 너무 확 낮춰야 할거같은데
-
저는 칸타타님을 2
존경합니다 하.지.만. 이번만큼은 양보 못해드려요
-
홈화면 ㅇㅈ 4
미니멀리즘을 너무 좋아해서 커스텀으로 꾸먀봤어요
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다